您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者21条结果 成果回收站

上传时间

2015年01月11日

【期刊论文】Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

徐增富

BMC Plant Biology 14:125, 2014,-0001,():

-1年11月30日

摘要

Background: Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results: To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions: JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

上传时间

2015年07月16日

【期刊论文】Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas

Jun Ni, Congcong Gao, Mao-Sheng Chen, Bang-Zhen Pan, Kaiqin Ye and Zeng-Fu Xu, Zeng-Fu Xu

Plant and Cell Physiology,2015,56(8):1655-1666

2015年06月15日

摘要

Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants.

Axillary bud, Bud outgrowth, Cytokinin, Gibberellin, Shoot branching, Strigolactone

上传时间

2019年11月17日

【期刊论文】Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas

Mao-Sheng Chen, Mei-Li Zhao, Gui-Juan Wang, Hui-Ying He, Xue Bai, Bang-Zhen Pan, Qiantang Fu, Yan-Bin Tao, Mingyong Tang, Jorge Martínez-Herrera, Zeng-Fu Xu, Mao-Sheng Chen, Mei-Li Zhao, Gui-Juan Wang, Hui-Ying He, Xue Bai, Bang-Zhen Pan, Qiantang Fu, Yan-Bin Tao, Mingyong Tang, Jorge Martínez-Herrera, Zeng-Fu Xu

BMC Plant Biology,2019,19(1):468

2019年11月04日

摘要

In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L., a perennial woody plant belonging to Euphorbiaceae. Two inflorescence branching mutants were identified in germplasm collection of Jatropha. The duo xiao hua (dxh) mutant has a seven-order branch inflorescence, and the gynoecy (g) mutant has a three-order branch inflorescence, while WT Jatropha has predominantly four-order branch inflorescence, occasionally the three- or five-order branch inflorescences in fields. Using weighted gene correlation network analysis (WGCNA), we identified several hub genes involved in the cytokinin metabolic pathway from modules highly associated with inflorescence phenotypes. Among them, Jatropha ADENOSINE KINASE 2 (JcADK2), ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (JcAPT1), CYTOKININ OXIDASE 3 (JcCKX3), ISOPENTENYLTRANSFERASE 5 (JcIPT5), LONELY GUY 3 (JcLOG3) and JcLOG5 may participate in cytokinin metabolic pathway in Jatropha. Consistently, exogenous application of cytokinin (6-benzyladenine, 6-BA) on inflorescence buds induced high-branch inflorescence phenotype in both low-branch inflorescence mutant (g) and WT plants. These results suggested that cytokinin is an important regulator in controlling inflorescence branching in Jatropha. In addition, comparative transcriptome analysis showed that Arabidopsis homologous genes Jatropha AGAMOUS-LIKE 6 (JcAGL6), JcAGL24, FRUITFUL (JcFUL), LEAFY (JcLFY), SEPALLATAs (JcSEPs), TERMINAL FLOWER 1 (JcTFL1), and WUSCHEL-RELATED HOMEOBOX 3 (JcWOX3), were differentially expressed in inflorescence

Transcriptome, inflorescence branching, cytokinin

0

上传时间

2015年01月11日

【期刊论文】A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas

徐增富

Journal of Plant Research. 127 (4): 513-524,2014,-0001,():

-1年11月30日

摘要

MOTHER OF FT AND TFL1 (MFT)-like genes belong to the phosphatidylethanoamine-binding protein (PEBP) gene family in plants. In contrast to their homologs FLOWERING LOCUS T (FT)-like and TERMINAL FLOWER 1 (TFL1)-like genes, which are involved in the regulation of the flowering time pathway, MFT-like genes function mainly during seed development and germination. In this study, a full-length cDNA of the MFT-like gene JcMFT1 from the biodiesel plant Jatropha curcas (L.) was isolated and found to be highly expressed in seeds. The promoter of JcMFT1 was cloned and characterized in transgenic Arabidopsis. A histochemical b-glucuronidase (GUS) assay indicated that the JcMFT1 promoter was predominantly expressed in both embryos and endosperms of transgenic Arabidopsis seeds. Fluorometric GUS analysis revealed that the JcMFT1 promoter was highly active at the mid to late stages of seed development. After seed germination, the JcMFT1 promoter activity decreased gradually. In addition, both the JcMFT1 expression in germinating Jatropha embryos and its promoter activity in germinating Arabidopsis embryos were induced by abscisic acid (ABA), possibly due to two ABA-responsive elements, a G-box and an RY repeat, in the JcMFT1 promoter region. These results show that the JcMFT1 promoter is seed-preferential and can be used to control transgene expression in the seeds of Jatropha and other transgenic plants.

上传时间

2011年06月01日

【期刊论文】Benzyladenine Treatment Significantly Increases the Seed Yield of the Biofuel Plant Jatropha curcas

徐增富, Bang-Zhen Pan, Zeng-Fu Xu

Journal of Plant Growth Regulation,2011,30(2):166-174

2011年06月01日

摘要

Jatropha curcas, a monoecious perennial biofuel shrub belonging to the family Euphorbiaceae, has few female flowers, which is one of the most important reasons for its poor seed yield. This study was undertaken to determine the effects of the plant growth regulator 6-benzyladenine (BA) on floral development and floral sex determination of J. curcas. Exogenous application of BA significantly increased the total number of flowers per inflorescence, reaching a 3.6-fold increase (from 215 to 784) at 160 mg/l of BA. Furthermore, BA treatments induced bisexual flowers, which were not found in control inflorescences, and a substantial increase in the femaleto- male flower ratio. Consequently, a 4.5-fold increase in fruit number and a 3.3-fold increase in final seed yield were observed in inflorescences treated with 160 mg/L of BA, which resulted from the greater number of female flowers and the newly induced bisexual flowers in BA-treated inflorescences. This study indicates that the seed yield of J. curcas can be increased by manipulation of floral development and floral sex expression.

6-Benzyladenine, Bisexual, Cytokinin, Female flowers, Physic nut, Sex determination

合作学者

  • 徐增富 邀请

    中国科学院西双版纳热带植物园,云南

    尚未开通主页