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Abstract: Edge-cloud collaborative anomaly detection has become the most important anomaly 

detection architecture. However, only in the most ideal state can the central cloud platform be fully 

trained with sufficient data. In the case of limited communication, we have to consider reducing the use 10 
of communication resources, but still maintain a high accuracy rate of anomaly detection. In this context, 

RKDE, a reservoir sampling algorithm based on kernel density estimation, is proposed to reduce the 

amount of data uploaded to the cloud by the edge end. By improving the probability of abnormal data 

being sampled, the compression pool of upload is constructed, the redundant process in gradient 

exchange is reduced, and the sampling process is timely fed back and adjusted according to the abnormal 15 
detection results in the cloud. At the same time, RKDE is compared with several sampling algorithms to 

demonstrate its performance advantages.
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0 Introduction  20 

In recent years, with the innovation and integration of the Internet of Things, cloud computing, 

wireless sensor network and other technologies, massive data has been generated in various 

fields, such as environmental monitoring, intelligent buildings, health care, industrial 

production and so on, which contains a wealth of useful information. Mining and mastering 

these hidden development laws, improving the quality of information, and improving the 25 

timeliness, accuracy and applicability of these three aspects have become the mainstream 

practice of using massive data at present. 

Terminal devices in the Internet of Things will generate a large amount of data during 

operation. If all the data is uploaded to the cloud for processing, it will cause huge pressure on 

the cloud. In order to share the burden of the central cloud node and reduce the computing 30 

pressure, the edge node performs data calculation and storage within its own scope of 

responsibility. The calculation and processing capacity of edge nodes are not exactly the same, 

and there exists the situation that they cannot afford and complete the data mining analysis. 

These data that cannot be fully processed still need to be transferred from the edge node to the 

central cloud platform, where data analysis, mining and data sharing are carried out. Meanwhile, 35 

the algorithm model training and upgrading of the data are carried out. The upgraded algorithm 

is deployed to the edge node, so that the edge node can directly use the results of cloud 

processing, thus saving the process of data mining and statistics. Reduce data processing stress. 

Therefore, in order to meet the increasing demand for data processing, edge-cloud collaboration 

has become the best choice. 40 

Due to the weak ability of edge to process data, all data cannot be transmitted to the cloud in 

the case of limited communication. It is found in the research of Tsinghua University that 99.9% 

of gradient exchange in distributed SGD is redundant. [1]Therefore, this paper will compress the 

gradient and transfer the data containing effective information to the cloud for model training. 
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There are many differences between different users and physical devices, but the data collected 45 

from different edges have similar trends, and the gradient can describe this trend change. In this 

paper, gradients will be used for subsequent training and learning. But there is a problem in the 

process of gradient compression: in the process of gradient compression, some information must 

be lost. In order to pursue speed and timeliness, the existing compression algorithm, such as 

Top-k sparsity[2], is to find k elements with the largest absolute value in the gradient vector and 50 

upload them to the cloud. The remaining elements are accumulated locally. When the 

accumulation exceeds the given threshold, they are packaged and transmitted to the cloud 

platform. Although this approach solves some timeliness issues, it does not reduce the total 

amount of data uploaded. 

To solve this problem, a reservoir sampling gradient compression method based on kernel 55 

density estimation is proposed. Compared with the previous gradient compression methods, this 

method introduces a new gradient compression idea, that is, adaptive kernel density estimation 

is added to the data sampling method. In this method, the gradient distribution is estimated, and 

a suitable kernel function is selected to estimate the kernel density, and the threshold of 

replacing the gradient strategy in the sampling algorithm is obtained. The gradient in the 60 

compression pool will eventually be output to the cloud in the form of a sequence for anomaly 

detection training. 

1 Related Work 

In general, when communication is limited, objective conditions do not support uploading all data, 

so the resource overhead in the communication process needs to be reduced. Take Federated 65 

learning as an example. Federated learning is a distributed machine learning framework that 

collaborates with the cloud and the edge for anomaly detection.[3] In the process of federated 

learning, there are usually two strategies to reduce the cost of communication resources. The first is 

to reduce the number of communication rounds in the training process, and the second is to reduce 

the amount of communication in each transmission. The most classic method to reduce 70 

communication rounds is FedAvg algorithm[4], which allows the edge to be updated locally for 

several rounds and then aggregated by the cloud platform. The advantage of this approach is that it 

can effectively reduce the number of communication rounds, but the disadvantage is that the edge 

must always be in a state of good network connection. In the scenario of this paper, such a condition 

is not satisfied. 75 

The main purpose of the second strategy is to reduce the amount of data transferred. The gradient 

is compressed by quantization, sparsity and depth gradient compression. The idea of quantization is 

that elements are represented with low precision or mapped to a predefined set of code words to 

reduce the number of bits per element in the gradient tensor. [5-7] Depth gradient compression adopts 

four strategies: momentum correction, local gradient truncation, momentum factor hiding and 80 

preheating training. Researchers from Tsinghua University found that 99.9% of gradient switching 

in distributed random gradient descent training is redundant. [1] Therefore, the DGC they proposed 

requires top-k selection of the gradient, and the sparse coefficient of the given target is 99.9%.In 

addition, there are other studies using deep learning techniques for gradient compression. [8-10]  

Through neural network training, the communication bandwidth demand can be greatly reduced. 85 

The idea of sparse method is to upload only the gradients of important parts to update the global 

model. The method used to determine whether the gradient is important becomes the core focus of 

the method. Strom proposed using the size of the gradient to measure its importance by setting a 

threshold in advance and uploading it when the gradient is greater than the threshold. [11] However, 
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in the actual situation, due to the great difference in the distribution of parameters of different 90 

network structures, we cannot choose the appropriate threshold value. In this paper, a reservoir 

sampling compression algorithm based on kernel density estimation is proposed, which is also a 

selective gradient to upload important parts. According to previous studies, most gradient exchanges 

are redundant. In order to improve the accuracy of anomaly detection on the central cloud platform, 

abnormal gradients should be highlighted as much as possible while normal gradients should be 95 

removed during sampling compression, so as to reduce data transmission. 

2 Reservoir sampling algorithm based on kernel density estimation 

Due to the weak ability of the edge to process data and the inability to transmit all data to the 

cloud under the condition of limited communication, we have to use data compression so that 

effective data can be transferred to the cloud for model training. The  data of different users and 100 

physical devices have many differences which do not mean that they are abnormal. The data 

collected from different edges have similar trends, and the gradient can describe this trend change. 

It is easier to train a neural network to learn anomalies. 

However, there exists an issue when compress gradient: In the process of gradient compression, 

some information is bound to be lost. In order to pursue speed and real-time performance, existed 105 

compression algorithms usually set a threshold and transmit gradients to the cloud in sections. 

Although this approach solves some of the timeliness problems, it does not reduce the total amount 

of uploaded data. 

To solve this issue , we propose a reservoir sampling gradient compression method based on 

kernel density estimation. Compared with previous gradient compression, our method introduces a 110 

new idea of gradient compression. We add adaptive kernel density estimation into the data sampling 

method. This method estimates the data distribution of the gradient and selects the distribution with 

the best fit and selects a suitable kernel function for kernel density estimation to obtain a threshold. 

Threshold will be compared to the new data points. Based on the results, we select the different 

replacement strategies in the sampling algorithm. The gradients in the compression pool will 115 

eventually be output in the form of a sequence and sent to the cloud for training of anomaly detection. 

2.1 Self-adaption kernel functions selection 

The density estimation commonly used in statistics is divided into parametric estimation and non-

parametric estimation. The density estimation commonly used in statistics is divided into parametric 

estimation and non-parametric estimation. Parameter estimation is divided into parameter regression 120 

analysis and parameter discriminant analysis. [12] In parametric regression analysis, it is assumed 

that the data distribution conforms to some specific law, such as linearity or exponential, and then 

specific solutions are found in the objective function to determine the unknown parameters in the 

regression model. In parametric discriminant analysis, one needs to assume that random data 

samples as the basis of discrimination obey a specific distribution in every possible category. 125 

However, in previous studies, there was often a large gap between the basic assumption of the 

parametric model and the actual physical model, and these methods could not always achieve 

satisfactory results. Since the collected data comes from different sensors, its overall probability 

density is unknown. However, the kernel density estimation method is not conducive to the prior 

data distribution, and does not make any assumptions about its distribution, which is more in line 130 

with the scene of real data analysis.  

Assuming 𝑥1 , 𝑥2 , ... 𝑥𝑛 are the 𝑁  sample points generated by the independent identically 

distribution 𝐹, let 𝑓 be its probability density, then the kernel density is estimated as: 
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𝑓ℎ(𝑥) =  
1

𝑛ℎ
∑ 𝑘 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1                         (2-1) 

Among them, the function k(x) is the kernel function, which satisfies the following equation: 135 

∫ 𝑘(𝑥)𝑑𝑥 = 1                             (2-2) 

The estimate uses the distance from 𝑥𝑖 to 𝑥 to determine the role of the density at estimating 

point 𝑥. Among them, ℎ represents the bandwidth. The smaller ℎ is, the closer the point to 𝑥 is 

to have an impact on the density of 𝑥. 

In the data stream, there are both normal data and abnormal data. From the perspective of density 140 

estimation, when there are a lot of data points around a data point, it means that the data point is 

consistent with most of the data, that is, normal data. Therefore, a high-density cluster can be 

regarded as normal data. You can view low-density clusters as abnormal data. To make a rough 

distinction between the two, the separation is likely to be non-linear for real data generated in real 

scenarios. The purpose of using the kernel function idea is to change the possible nonlinearity into 145 

linearity, so as to make the later work easier. 

 

Fig. 1 Raw data density partition 

 

Fig. 2 Data density division after kernel transformation 150 

Suppose that the original two-dimensional space R2 is changed into three-dimensional space 

R3, namely: 

Φ：(𝑥1, 𝑥2) → (𝑧1, 𝑧2, 𝑧3) = (𝑥1
2, √2

2
𝑥1𝑥2, 𝑥2

2)               (2-3) 

Taking Figure 1 as an example, in the original space, the dividing line separating the two types 

of data can be expressed as: 155 

𝑥1
2

𝑎2 +
𝑥2

2

𝑏2 = 1                            (2-4) 

Transform to three-dimensional space through point-to-point mapping: 
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𝑥1
2

𝑎2
+

𝑥2
2

𝑏2
= 1 →

1

𝑎2
· 𝑧1 + 0 · 𝑧2 +

1

𝑏2
· 𝑧3 = 1              (2-5) 

At this time, it can be found that in the three-dimensional space, the original elliptic dividing line 

becomes a plane dividing plane. By calculating the inner product: 160 

< Φ(𝑥1, 𝑥2), Φ(𝑥1
′ , 𝑥2

′ ) >                              (2-6) 

= < (𝑧1, 𝑧2, 𝑧3), (𝑧1
′ , 𝑧2

′ , 𝑧3
′ ) > 

= < (𝑥1
2, √2

2
𝑥1𝑥2, 𝑥2

2), (𝑥1
′2, √2

2
𝑥1

′ 𝑥2
′ , 𝑥2

′2) > 

=  𝑥1
2𝑥1

′2 + 2𝑥1𝑥2𝑥1
′ 𝑥2

′ + 𝑥2
2𝑥2

′2 

= (𝑥1𝑥1
′ + 𝑥2𝑥2

′ )2 165 

= (< 𝑥, 𝑥′ >)2 = 𝑘(𝑥, 𝑥′) 

𝑘(𝑥, 𝑥′) is the kernel function, and it turns out that going from a lower dimensional space to a 

higher dimensional space has nothing to do with Phi, it just needs the kernel function. As you can 

see, in the raw data, if you want to separate the two types of data, you have to separate them by an 

ellipse, which means it's not linearly separable; But by mapping low-dimensional data to higher-170 

dimensional data through kernel changes, the data is easily classified through a hyperplane, that is, 

the data becomes linearly divisible in higher-dimensional space. 

Secondly，in order to match the diversity of data better, we provide three kinds of kernel functions, 

which have a large gap about their fit function curve, becoming the result of adaptive selection. 

They are Gaussian kernel, Sigmoid kernel, and Epanechnikov kernel. 175 

The expression for the Gaussian kernel is: 

𝑘𝑔𝑎𝑢(𝑥, 𝑦) =  𝑒𝑥𝑝(−
1

2𝜎2 ∥ 𝑥 − 𝑦 ∥2)                     (2-7) 

The expression for the Exponential kernel is: 

𝑘𝑒𝑥𝑝(𝑥) =  𝑒𝑥𝑝(−
1

2𝜎2 ∥ 𝑥 − 𝑦 ∥)                       (2-8) 

The expression for the Epanechnikov kernel is: 180 

𝑘𝑒𝑝𝑎(𝑥) =  
3

4
(1 − 𝑥2)                            (2-9) 

Thirdly，in order to measure which dose curve the data more closely resembles, we compute the 

total log-likelihood under the model.  

SSR =  ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1                           (2-10) 

We calculate the difference between the data points and the corresponding positions of the fitted 185 

curve, and approximate the collected discrete data with analytical expressions. Then, calculate the 

residual sum of squares of the fitted curves with the three kernel functions, and select the fitting 

curve with the smallest residual sum of squares as the selected kernel function. This adaptive 

selection method can improve the validity, unbiasedness and consistency of density estimation. 

 190 
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Fig. 3 Kernel function selection example 

2.2 Replacement policy in reservoir sampling gradient compression 

The reservoir algorithm is a classic sampling algorithm. The algorithm draws samples without 

replacement from a data stream of unknown size and guarantees that each sample is drawn with the 

same probability. [13] However, in the scenario of this paper, abnormal data accounts for a very small 195 

proportion of the data stream. In order to amplify abnormal data features, while ensuring that the 

generated data summaries correctly reflect the overall sample, our reservoir algorithm has been 

improved.  

 Based on the choice of kernel function, we already know the approximate distribution of the 

data flow. A threshold is determined based on the kernel density estimate to separate the data into 200 

high-density clusters and low-density clusters. High-density clusters are normal data, and low-

density clusters are abnormal data. 

First, when new data arrives, we compute the relative density of that data and classify it as either 

high-density clusters or low-density clusters. 

Second, use different replacement strategies depending on the category you belong to. This 205 

replacement strategy will directly affect the final result of the algorithm. 

The improved algorithm flow and related definitions are as follows: 

Let 𝑑(𝑝, 𝑞) be the distance between point 𝑝 and q. 

 If 𝐶 is a cluster , let 𝑑(𝑝, 𝐶) be the shortest distance in the 𝐶. 

𝑑(𝑝, 𝐶) = min{ 𝑑(𝑝, 𝑞)| 𝑞 ∈ 𝐶}                      (2-11) 210 

∀ 𝑘 ∈  𝑁+, 𝑑𝑘(𝑝) express the distance-𝑘− of 𝑝 

Given a distance equal to k of p, the k-nearest neighbor field 𝑁𝑘−𝑝 of p contains all objects 

whose distance are no more than k away from p: 

𝑁𝑘−𝑝(𝑝) = {𝑞 ∈ ∁\{𝑝} | 𝑑(𝑝, 𝑞) ≤ 𝑘 − 𝑝}                    (2-12) 

And we call 𝑞 as 𝑝’s k-nearest neighbors 215 

k ∈ n+，we call 𝐸𝑀(𝑝, 𝑜) as effective maximum distance of p relative to o. 

𝐸𝑀(𝑝, 𝑜) = max { 𝑑(𝑝, 𝑜), 𝑘}                       (2-13) 

Especially, if the distance between 𝑝 and 𝑜 is too close and exceeds a certain value,  we define 

its distance as 𝑘. We use this method to reduce statistical fluctuations. 

The part density of an object 𝑝, which we call 𝜌, can be expressed as the number of objects 220 

within the effective maximum distance of 𝑝. 

𝜌𝑝 =  
|𝑁𝑘−𝑝(𝑝)| 

∑ 𝐸𝑀(𝑝,𝑜)𝑜∈𝑁𝑘−𝑝(𝑝)
                         (2-14) 

Then, the relative density between object p and object o can be expressed as: 

𝜌𝑝−𝑜 =
𝜌𝑝

𝜌𝑜
                               (2-15) 

The improved reservoir sampling data compression method is as follows: 225 

Step 1: Insert 𝑒1, 𝑒2, ..., 𝑒𝑟 elements to initialize the compression pool 𝑟. 

Step 2: Calculate the SSR of the data in the compressed pool with the three fit function curves. 

Select the fit function with the smallest SSR as the kernel function. 

Step 3: Substitute the kernel function into the kernel density estimation formula for calculation to 

obtain a threshold δ. Divide the data into high-density clusters and low-density clusters. 230 

Step 4: When there is new data, calculate the relative distance between the point and the data 

center of the compression pool. The closer the 𝜌𝑝−𝑜 value is to 1, the closer the p point density is 

to the o point, and these two points belong to the same cluster. When the ratio is smaller, it means 
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that the point p may be an abnormal point. If the new data belongs to a high-density set, use random 

sampling to enter the compression pool; if it belongs to a low-density set, with normalized 𝑝 =  
1

𝜌𝑝
 235 

as the sampling probability, calculate the weight, which represents the probability that the gradient 

is drawn and replaced into the compression pool. 

Step 5: Send the final compressed pool data to the cloud. 

Algorithm 1 ：Gradient Compression : Based on Kernel Density Estimation 

Input: initial data set I, initial compressed pool 𝐶𝐼, new data set X | 𝑥𝑖 ∈ X, density threshold 

δ, random sampling probability 𝑝, compression pool size 𝑙 

Output: final compressed pool 𝐶𝐹 

1   SSR𝑔 =  ∑ (𝑘𝑔(𝑥𝑖) − 𝑦𝑖̂)
2𝑛

𝑖=1   

2   SSR𝑠 =  ∑ (𝑘𝑠(𝑥𝑖) − 𝑦𝑖̂)
2𝑛

𝑖=1  

3   SSR𝑒 =  ∑ (𝑘𝑒(𝑥𝑖) − 𝑦𝑖̂)
2𝑛

𝑖=1  

4   𝑘(𝑥) = argmin{SSR𝑔 , SSR𝑠, SSR𝑒} 

5   // Divide data with density estimation  

6   If 𝑓ℎ(𝑥) ≥  𝛿 then 

7    𝑥𝑖 is randomly sampled according to 𝑝 

8    put the results into 𝐶𝐼. 

9    for the size of 𝐶𝐼 > 𝑙 

10     remove samples marked as high density from 𝐶𝐼 

11    end 

12   else if 𝑓ℎ(𝑥) <  𝛿 then 

13    𝑥𝑖 is sampled according to 𝑝 = normalized
1

𝜌𝑝
. 

14    put the results into 𝐶𝐼 

15    for the size of 𝐶𝐼 > 𝑙 

16     remove samples marked as high density from 𝐶𝐼 

17    end 

18   End 

19   𝐶𝐹 = updated 𝐶𝐼 

2.3 Negative feedback mechanism for edge-cloud collaboration 

The reservoir sampling algorithm based on kernel density estimation is located at the edge node, 240 

and its goal is to compress the uploaded data. The neural network training algorithm is located in 

the cloud, and its goal is to train a model using compressed uploaded data. After the model is 

obtained by the cloud platform, the model parameters are sent to the edge gateway. The edge end 

establishes the model through the global parameters, and uses the model to detect data anomalies 

and alarm the abnormal values. In an ideal case, the model can be used all the time. However, the 245 

reality is that whether due to equipment aging or environmental changes, the data trend changes, 

then the anomaly detection model should also change with the change, and the model should be 

updated and iterated in time. 

In order to solve the above problems, this paper proposes a negative feedback mechanism with 

dynamic weight adjustment as optimization. According to the results of anomaly detection and 250 

new data input, the model is updated. After receiving the parameters of the anomaly detection 

model trained by the cloud, the edge terminal generates the anomaly detection model locally, 

detects the anomaly of the data stored in the database, and alarms the anomaly. In the previous 

chapters, the reservoir sampling algorithm based on kernel density estimation is introduced. In 

the process of compression, the sampling probability is assigned to the data according to its 255 

relative density. After the completion of anomaly detection, for frequent anomaly types, the 

gradient generated when the anomaly data is compressed is traced back at the edge end. According 

to the anomaly detection results, the sampling probability weight influence factor is calculated to 
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reduce the weight of the relevant gradient, so as to reduce the probability of this kind of data being 

replaced into the compression pool. 260 

The edge end receives the anomaly detection model parameters, loads the model, and uses the 

model to perform anomaly detection on the data. Get results 𝑌 = [𝑌1, 𝑌2, 𝑌3 ···, 𝑌𝑛], 𝑌1, 𝑌2, 𝑌3 ···

, 𝑌𝑛 said different categories of abnormal data. The results of 𝑌1, 𝑌2, 𝑌3 ···, 𝑌𝑛 would be quantified, 

and it can get  𝑁 = [𝑁1, 𝑁2, 𝑁3,···, 𝑁𝑛] , 𝑁1, 𝑁2, 𝑁3 ···, 𝑁𝑛  means 𝑌1, 𝑌2, 𝑌3,···, 𝑌𝑛  appears the 

number of times. 265 

Let 𝑁̅ =
𝑁1+𝑁2+𝑁3+···+𝑁𝑛

𝑛
，𝑁𝑘 = 𝑁𝑚𝑎𝑥; 

Correction: 

 t =
𝑁𝑘−𝑁̅

𝑁1+𝑁2+𝑁3+···+𝑁𝑛
                          (2-16) 

Updated sampling probability: 

 𝑝′ = 𝑡 · 𝑝                              (2-17) 270 

At this time, the edge side uses the updated probability to sample and compress the gradient, and 

the probability of 𝑌𝑘 type anomalies being transmitted to the cloud is reduced, which reduces the 

repetitive work. The cloud receives the data after gradient compression, which significantly 

reduces the communication traffic and ensures the accuracy of anomaly detection training. The 

edge side uses the model generated by the cloud to adjust its own gradient compression process 275 

while detecting data anomalies, which better reflects the idea of cloud-edge collaboration. 

3 Experiment and Results  

3.1 Experiment 

In this paper, the effect of gradient compression on edge end in communication constrained 

scenario is verified by experiments. The experiment includes the comparison between the gradient 280 

compression algorithm designed in this paper and other algorithms, as well as the comparison 

between the selection of different parameters and the results of the algorithm in the longitudinal 

dimension. We evaluate our algorithm on five real world time series with actual anomaly events 

which called Numenta anomaly benchmark (NAB), covering office ambient temperature, CPU 

usage on Amazon Web Services (AWS) and Amazon East Coast data center servers. The internal 285 

temperature of industrial machines and the number of taxi riders in New York City. 

There are two kinds of experiments designed in this paper. Firstly, use the compression algorithm 

proposed in this paper and the compression algorithm in related studies to compress the data set and 

compare the effect; second, adjust the parameters of the algorithm in this paper, and compare the 

effect of the algorithm proposed in this paper under different parameter Settings. In the experiment, 290 

in order to facilitate the evaluation of the algorithm's performance and the comparison with other 

algorithms, the experimental indicators in this paper refer to the methods in the literature, and the 

representability of anomalies and calculation time are used to evaluate the algorithm in this paper. 

For example, if there are 100 abnormal data samples in the data set and 10 abnormal data are 

included in the generated profile, the summary has an exception representability of 10%.The 295 

representability of the exception is that the index data set consists of A abnormal data samples, 

and the generated data summary contains a abnormal data samples, so the representability of the 

exception is 
𝑎

𝐴
∗ 100%. When the representability is higher, the generated data profile is more 

suitable for anomaly detection tasks. The computation time is the running time of the algorithm. 

Firstly, the SSE of data is calculated by three fitting function curves. The one with the smallest 300 

selection value is taken as the selection kernel function, and the kernel function is substituted into 

the kernel density estimation formula for calculation, and the threshold value δ is obtained. The 

data can be classified into high density and low density categories based on the threshold value δ. 

In this case, when new data is incoming, the relative distance between this point and the data 
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center of the compression pool is calculated. If the relative distance is small, the new data is low-305 

density, while the relative distance is large, the new data is high-density. If the new data belongs 

to the high-density set, random sampling is used to enter the compression pool. If it belongs to 

the low density set, 𝑝 =  
1

𝜌𝑝
 is taken as the sampling probability and the weight is calculated. 

The weight represents the probability that this point is replaced into the compression pool. 

3.1.1 Adjust parameter 310 

Table 1 and 2 shows the anomaly representability and computation time of exceptions obtained 

from different data sets when taking compression pools of different sizes. Where L represents the 

ratio of the compressed pool to the original data. 

Tab. 1  The anomaly representability results base on different L 

Anomaly Representability L=5% L=10% L=15% L=20% 

Dataset: Ambient temperature 45.8% 63.7% 88.4% 95.5% 

Dataset: CPU utilization AWS 25.4% 46.7% 86.3% 89.1% 

Dataset: CPU utilization EC2 44.8% 65.7% 89.4% 97.1% 

Dataset: Machine temperature 56.9% 76.7% 83.5% 96.5% 

Dataset: NYC taxi 36.8% 63.7% 75.4% 96.8% 

 315 

Tab. 2  The computation time results base on different L 

Computation Time(MS) L=5% L=10% L=15% L=20% 

Dataset: Ambient temperature 83 106 94 92 

Dataset: CPU utilization AWS 67 86 84 89 

Dataset: CPU utilization EC2 78 111 97 102 

Dataset: Machine temperature 85 136 122 127 

Dataset: NYC taxi 44 86 104 99 

 

3.1.2 Compare with other algorithms 

For our compression algorithm, it is based on reservoir sampling algorithm to carry out. 

Therefore, the algorithms used in comparison experiments here are all compression algorithms using 320 

sampling methods. SRS [14] represents the classical reservoir sampling algorithm. PSSR [15] sampling 

and MSSR [15] sampling respectively represent the pair distance and center point methods proposed 

in literature [15], while RKDE represents the sampling algorithm proposed in this paper. Table 3 and 

Table 4 show the results of anomaly representability and calculation time obtained after data 

compression using different sampling methods. 325 

Tab. 3  The anomaly representability results base on different algorithm 

Anomaly Representability RKDE SRS PSSR MSSR 

Dataset: Ambient temperature 88.4% 4.76% 68.4% 45.9% 

Dataset: CPU utilization AWS 86.3% 4.70% 59.66% 57.12% 

Dataset: CPU utilization EC2 89.4% 5.87% 46.67% 23.84% 

Dataset: Machine temperature 83.5% 3.91% 55.96% 68.74% 

Dataset: NYC taxi 88.4% 6.43% 75.4% 38.54% 

 

Tab. 4  The computation time results base on different algorithm 

Computation Time(MS) RKDE SRS PSSR MSSR 

Dataset: Ambient temperature 94 42 133 592 
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Dataset: CPU utilization AWS 84 33 95 423 

Dataset: CPU utilization EC2 97 56 102 532 

Dataset: Machine temperature 122 67 118 637 

Dataset: NYC taxi 104 35 138 742 

 

3.2 Results 330 

Through the above experiments, experimental results are obtained in Table 1,2,3,4. According 

to the results shown in Table 1 and Table 2, the following conclusions can be drawn: when only 

abnormal representability is considered, the size L of the compression pool is positively correlated 

with abnormal representability. The larger L is, the more outliers it contains, and the smaller L is, 

the fewer outliers it contains. This is in line with our expectations. If we consider only the operation 335 

time, we find that the inflection point occurs when L=10%, and the operation time is not positively 

correlated with L. The reason for this situation can be analyzed as follows: when L is small, there 

are fewer operation cycles, and the complexity of density calculation is low, so less time is spent. 

However, when L is larger, such as L=15% or L=20%, the probability of being sampled in the 

operation process becomes larger, so the complexity becomes lower. Based on the results of Table 340 

1 and Table 2, in the subsequent research, L=15% was used for compression, and both time and 

anomaly representability were taken into account, and relatively good results were obtained. 

According to the results shown in Table 3 and Table 4, it can be found that in the index 

comparison of anomaly representability, the classical reservoir algorithm SRS cannot cover enough 

abnormal data, and its anomaly representability is low. The results of PSSR sampling and MSSR 345 

sampling are not the same as the RKDE sampling proposed in this paper. In terms of operation time, 

the classical reservoir algorithm SRS is the fastest because of its low complexity, while RKDE 

sampling is similar to PSSR sampling algorithm in terms of time efficiency. 

4 Conclusion 

In this paper , a reservoir algorithm based on kernel density estimation is proposed for edge cloud 350 

collaborative anomaly detection in communication constrained scenarios. The purpose of this 

algorithm is to reduce the amount of data uploaded by the edge to the central cloud platform. The 

main approach is to firstly classify the data by kernel density estimation; secondly, density 

estimation is carried out on the continuously reached time series data, and the density classification 

is taken as the sampling probability to generate a sampling compression pool and upload it to the 355 

central cloud platform for neural network training. RKDE can not only compress the amount of data 

uploaded, but also adjust the negative feedback mechanism. In this way, data uploaded to the cloud 

can be updated to improve the accuracy of anomaly detection. In this paper, the advantages of RKDE 

algorithm and its rationality are verified by parameter tuning and comparison experiments. 
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基于核密度估计的蓄水池时序数据抽

样压缩 
曹严匀，徐鹏 

（北京邮电大学计算机学院（国家示范性软件学院），北京 100876） 

摘要：边云协同的异常检测成为了当今最主要的异常检测架构。然而，只有在最理想的状态395 

下，中心云平台才可以利用充分的数据进行充分的训练。在通信受限的情况下，不得不考虑

减少通信资源的使用，但依旧保持高精确率的异常检测。本文在此背景下，提出了基于核密

度估计的蓄水池抽样算法——RKDE，来减少边缘端上传至云端的数据量。通过对提高异常

数据被抽样的概率，来构建上传的压缩池，减少梯度交换中的冗余过程，并依据云端异常检

测的结果，对抽样过程及时反馈调整。同时，将 RKDE 与多个抽样算法进行对比，展示其性400 

能优势。 
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