基于无监督领域自适应的调制识别算法
首发时间:2025-05-14
摘要:调制识别是无线通信中的关键任务, 深度学习方法在该领域已取得显著进展, 但在复杂非合作环境下仍面临泛化能力不足的挑战。现有模型常依赖特定数据集训练, 难以适应信道条件多变、参数未知、目标域无类别标签等现实场景。针对此, 本文提出一种基于无监督对抗领域自适应的跨信道调制识别方法, 通过无标签特征对齐提升模型在不同信道下的识别能力。实验验证表明, 该方法在缺乏标注数据的情况下仍能显著增强调制识别性能, 具备良好跨域泛化能力。
关键词: 信号与信息处理 调制识别; 无监督学习; 域自适应
For information in English, please click here
Modulation Recognition Algorithm Based on Unsupervised Domain Adaptation
Abstract:Modulation recognition is a critical task in wireless communications, and deep learning methods have achieved remarkable progress in this domain. However, their generalization ability remains limited in complex and non-cooperative environments. Existing models are typically trained on specific datasets and struggle to adapt to varying channel conditions, unknown signal parameters, and unlabeled target domains. To address these challenges, this paper proposes an unsupervised adversarial domain adaptation method for cross-channel modulation recognition. By aligning feature distributions without relying on labeled data, the proposed approach enhances the model's recognition capability under diverse channel conditions. Experimental results demonstrate that the method significantly improves modulation classification performance in unlabeled scenarios, exhibiting strong cross-domain generalization.
Keywords: Signal and Information Processing Modulation Recognition Unsupervised Learning Domain Adaptation
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于无监督领域自适应的调制识别算法
评论
全部评论