基于加权多源域适应的脑电迁移学习算法
首发时间:2025-04-08
摘要:近年来,脑电信号 (Electroencephalogram, EEG)迁移学习算法在脑机接口(Brain Computer Interfaces, BCI)领域展现出了巨大的潜力。EEG信号具有个体差异性,这种数据分布的差异导致在单一个体脑电数据上训练好的模型,应用到其他个体上时性能会显著降低。现有的EEG迁移算法仍无法充分学习不同域之间的语义关联,在转移语义知识的效率上还有较大提升空间。为了克服这一挑战,本文提出了一个基于加权多源域适应的脑电迁移算法。通过最大均值差异距离(Maximum Mean Discrepancy, MMD)衡量不同源域和目标域之间的分布差距,不断缩小不同域之间的距离,拉近不同域间的决策边界,减少域偏移的影响。根据源域和目标域的归一化互信息大小,为源域分配不同的迁移权重,表示样本的重要性程度。采用注意力模块有效捕捉脑电信号不同通道间的语义信息关联,让模型深入学习不同域之间的相关性信息,充分对齐源域和目标域数据,实现源域到目标域的脑电迁移。算法在数据集上进行了实验验证,结果表明本文提出的算法可以有效提高目标域数据在源域模型上的性能,证明了算法的有效性。
For information in English, please click here
EEG Transfer Learning Algorithm Based on Weighted Multi-Source Domain Adaptation
Abstract:In recent years, electroencephalogram (EEG) transfer learning algorithms have demonstrated significant potential in the research of Brain computer interfaces (BCI). EEG signals exhibit variability between individuals due to differences in psychological states and cognitive levels. This variation in data distribution leads to a significant drop in performance when models trained on EEG data from a single individual are applied to others. Current EEG transfer algorithms face challenges in effectively capturing semantic correlations across different data domains, indicating significant potential to improve the efficiency of transferring semantic knowledge. This paper proposes a weighted adaptive multi-source domain EEG transfer learning algorithm to address these challenges. The proposed algorithm aims to narrow the distance and align the decision boundaries between different domains to eliminate the effects of domain-shift. It assigns different transfer weights to source domains based on the normalized mutual information between the source and target domains, indicating the significance of samples. An attention module is employed to effectively capture semantic information correlations across different EEG channels, enabling the model to deeply learn the relationships between domains and thoroughly align source and target domain data, thus achieving EEG transfer from source to target domains. Experimental validation on datasets demonstrates that the proposed algorithm significantly enhances the performance of target domain data on source domain models, proving the algorithm's effectiveness.
Keywords: Deep Learning Brain Computer Interfaces Transfer Learning Domain Adaptation
基金:
引用
No.****
同行评议
勘误表
基于加权多源域适应的脑电迁移学习算法
评论
全部评论