基于快速潜在空间扩散模型的图像修复算法
首发时间:2025-04-30
摘要:为了应对行人遮挡造成室内视觉定位导航性能下降的问题,本文提出了一种基于快速潜在空间扩散模型的图像修复算法,对行人遮挡造成的像素缺失进行修复和补全,尽量还原语义目标的原始结构信息。基于快速潜在空间扩散模型的图像修复算法将输入数据从像素空间转换到潜在空间,并对扩散模型的前向扩散过程进行了简化,在保障修复效果的前提下极大地压缩了扩散模型的时间开销。大量的实验结果表明,本文提出的图像修复方法可以有效地恢复被行人遮挡的前景目标语义结构,从而提高了场景识别的准确性,并最终降低由于行人遮挡产生的定位误差。
For information in English, please click here
Image inpainting algorithm based on rapid latent spatial diffusion model
Abstract:To address the decline in indoor visual localization and navigation performance caused by pedestrian occlusions, this paper proposes an image inpainting algorithm based on a fast latent space diffusion model. This algorithm repairs and completes the pixel gaps caused by pedestrian occlusions, aiming to restore the original structural information of semantic targets as much as possible. The image inpainting algorithm based on the rapid latent space diffusion model transforms input data from pixel space to latent space and simplifies the forward diffusion process of the diffusion model, significantly reducing the time overhead of the diffusion model while ensuring the quality of inpainting. Extensive experimental results demonstrate that the proposed image inpainting method effectively restores the semantic structure of foreground targets obscured by pedestrians, thereby improving the accuracy of scene recognition and ultimately reducing the localization errors caused by pedestrian occlusions.
Keywords: visual localization image inpainting diffusion model pedestrian occlusion
引用
No.****
同行评议
勘误表
基于快速潜在空间扩散模型的图像修复算法
评论
全部评论