基于业务逻辑增强的大语言模型对话策略学习方法
首发时间:2025-03-06
摘要:在任务型对话系统中,现有的对话策略学习方法因数据局限性、逻辑约束缺失及生成不可控等问题,难以满足复杂业务场景的鲁棒性与合规性需求。为此,本文提出了一种融合数据增强与业务逻辑显式优化的对话策略学习方法。针对数据局限性,设计层次化指令进化框架,结合广度进化、深度进化与淘汰进化注入领域规则与逻辑约束,提高数据多样性与复杂性。采用参数微调实现领域知识学习,在降低计算成本的同时增强模型对垂直任务的适配能力。进一步构建因果关系驱动的业务可行性关系图,显式定义“应该”“不应该”“可行”三类业务逻辑约束,以此优化候选对话行为,确保预测结果符合动态业务规则。实验结果表明,该方法在MultiWOZ与SGD数据集上的F1值分别达到了42.4\%与81.8\%,较基线模型均有明显性能提升。本文为高合规性场景下的对话策略学习方法提供了可解释、可控制的技术路径,为任务型对话系统的智能化发展探索了新的思路。
关键词: 对话策略学习 大语言模型 指令进化 参数微调 图增强
For information in English, please click here
A Business Logic-Enhanced Method for Dialogue Policy Learning Based on Large Language Models
Abstract:In task-oriented dialogue systems, existing dialogue policy learning methods struggle to meet the robustness and compliance requirements of complex business scenarios due to data limitations, absence of logical constraints, and uncontrollable generation. To address these challenges, this paper proposes a dialogue policy learning method that integrates data augmentation with explicit optimization of business logic. To mitigate data limitations, a hierarchical evol-instruct framework is designed, incorporating breadth-wise evolution, depth-wise evolution, and elimination-based evolution to inject domain-specific rules and logical constraints, thereby enhancing data diversity and complexity.Domain knowledge learning is facilitated through parameter fine-tuning, reducing computational costs while enhancing the model’s adaptability to vertical tasks. Furthermore, a causality-driven business feasibility relation graph is constructed to explicitly define three categories of business logic constraints—"should," "should not," and "can"—thereby optimizing candidate dialogue actions to ensure predictions align with dynamic business rules. Experimental results demonstrate that the proposed method achieves F1 scores of 42.4\% and 81.8\% on the MultiWOZ and SGD datasets, respectively, significantly outperforming baseline models. This work provides an interpretable and controllable technical framework for dialogue policy learning in high-compliance scenarios, offering new insights for advancing the intelligence of task-oriented dialogue systems.
Keywords: Dialogue policy learning Large language model Evol-instruct Parameter fine-tuning Graph augmentation
基金:
引用
No.****
同行评议
勘误表
基于业务逻辑增强的大语言模型对话策略学习方法
评论
全部评论