结合全局信息和多级意图的会话推荐方法
首发时间:2025-03-27
摘要:会话推荐旨在根据匿名用户在当前会话中的行为预测其下一个感兴趣的项目。虽然目前的研究已取得不错的效果,但也存在一定的问题。现有的多数研究只利用了单会话内的信息,忽略了其他会话内的相关信息,而多会话模型在使用跨会话信息时可能会引入噪声影响模型的性能。此外,受领域内早期工作的影响,现有模型仅将会话内最后一个项目作为用户的当前意图,没考虑用户的多级意图,可能导致模型对用户意图建模不够准确。为解决上述问题,本文提出一种结合全局信息和多级意图的会话推荐方法。模型从全局图中采样邻居节点并利用注意力机制减少噪声的干扰,将全局信息引入到当前会话中。同时,模型通过多级意图模块生成用户的多级意图表示,从而提高模型对用户意图的建模能力。三个数据集上的实验结果证明了本文所提方法的有效性。
For information in English, please click here
Session-based Recommendation with Global Information Integration and Multi-level Intent Modeling
Abstract:Session-based Recommendationaims to predict the next item of interest for an anonymous user based on user\'s behavior in the current session.Although current research has achieved excellent results, there are still some problems. Most existing studies only use informaiton within a single session, ignoring the information in other sessions, while some multi-session models may introduce noise that affects the performance of the model when using cross-session information. Besides, due to the influence of early work, existing models only consider the last item in the session as the user\'s current intent, and do not take into account the user\'s multi-level intents, which may lead to inaccurate modeling of user intents. To solve the above problems, this paper proposes a Session-based Recommendation method that combines global information and multi-level intents. The model introduces global information into the current session by sampling neighbor nodes from the global graph and using the attention mechanism to reduce the interference of noise. At the same time, the model generates multi-level intent representation of the user through the multi-level intent module, which improves the model\'s ability of modeling user intents. Experimental results on three datasets demonstrate the effectiveness of the proposed method.
Keywords: Session-based Recommendation Graph Neural Networks Computer Application Technology
基金:
引用
No.****
同行评议
勘误表
结合全局信息和多级意图的会话推荐方法
评论
全部评论