基于深度学习的酿酒酵母生产中热带假丝酵母检测
首发时间:2025-03-19
摘要:(酿酒酵母在发酵工业中具有重要价值,但易受热带假丝酵母污染影响发酵进程和产量。本研究利用显微成像技术与目标检测结合,通过分析酿酒酵母在不同假丝酵母污染浓度下的生长、出芽率、絮凝性和形态参数等生理指标变化,构建了基于改进 YOLOv10 算法的目标检测模型,用于检测酿酒酵母和假丝酵母的形态变化。实验结果表明,该模型能准确判断杂菌生长阶段和酵母污染程度,平均准确率高,在精确度、召回率和 mAP 等指标上表现优异,且参数量小、计算量低,便于部署在小型设备中,为酿酒酵母发酵过程中的染菌检测和质量控制提供了有效手段,也为深入研究酵母间相互作用提供了理论和实验依据
关键词: 图像识别 酿酒酵母 热带假丝酵母 深度学习 YOLOv10 细胞形态
For information in English, please click here
Deep learning-based detection of tropical candida in Saccharomyces cerevisiae production
Abstract:ISaccharomyces cerevisiae holds significant value in the fermentation industry, yet its fermentation process and yield are susceptible to contamination by Candida tropicalis. This study integrated microscopic imaging with object detection technology to analyze physiological parameter variations of S. cerevisiae under different C. tropicalis contamination levels, including growth dynamics, budding rate, flocculation capacity, and morphological characteristics. An enhanced YOLOv10-based object detection model was constructed to detect morphological changes in both yeast species. Experimental results demonstrated that the model accurately identified contaminant growth phases and contamination severity, achieving high mean accuracy with outstanding performance in precision, recall, and mean Average Precision (mAP). Featuring compact parameters and low computational complexity, the model is deployable on edge devices. This approach provides an effective solution for real-time contamination monitoring and quality control in S. cerevisiae fermentation processes, while also establishing theoretical and experimental foundations for investigating yeast-yeast interactions.
Keywords: Image recognition Saccharomyces cerevisiae;Candida tropicalis;Deep Learning;YOLOv10;Cellular Morphology
引用
No.****
动态公开评议
共计0人参与
勘误表
基于深度学习的酿酒酵母生产中热带假丝酵母检测
评论
全部评论