一种基于图注意力网络的轨迹预测方法
首发时间:2025-03-19
摘要:轨迹预测作为经典"感知-预测-决策"框架的中间任务,承担了承接上游感知信息的责任,将传感器感知信息转化为可用信息从而加以利用;同时预测的数据是下游决策任务的参考;所以,准确高效的轨迹预测是必不可少的,这也是轨迹预测的必要性所在。为了解决传统CNN在自动驾驶轨迹预测中由于适合处理欧几里得空间数据而导致的获取道路全局信息时效果不佳的问题,将道路结构建模为图结构,并采用图注意力网络(Graph Attention Network,GAT)进行轨迹预测任务。在ApolloScape数据集上的实验结果表明,GAT方法效果相比于传统网络在各个方面的指标上均有一定程度的提升。
For information in English, please click here
A trajectory prediction method based on graph attention network
Abstract:Trajectory prediction, as an intermediate task in the classic "perception prediction decision" framework, assumes the responsibility of receiving upstream perception information, converting sensor perception information into usable information for utilization; The simultaneously predicted data serves as a reference for downstream decision-making tasks; Therefore, accurate and efficient trajectory prediction is essential, which is also the necessity of trajectory prediction. In order to solve the problem of poor performance of traditional CNN in obtaining global road information in autonomous driving trajectory prediction due to its suitability for processing Euclidean space data, the road structure is modeled as a graph structure, and a Graph Attention Network (GAT) is used for trajectory prediction tasks. The experimental results on the ApolloScape dataset show that the GAT method has a certain degree of improvement in various indicators compared to traditional networks.
Keywords: autonomous driving trajectory prediction graph attention network
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
一种基于图注意力网络的轨迹预测方法
评论
全部评论