TSRLB: 一种基于两阶段强化学习的负载均衡任务调度算法
首发时间:2025-02-21
摘要:综述文章:以背景、研究现状、研究用途的结构书写,篇幅以150~300字左右为宜,不用第一人称做主语,不与正文语句重复。一般研究性文章:以摘录要点的形式按目的、方法、结果、结论的结构报道出作者的主要研究成果,字数在200~400字左右为宜,不用第一人称做主语,不与正文语句重复。}\abstractCHN{云计算环境中的任务调度问题是一个受到广泛研究的问题。在负载均衡任务调度中,现有的强化学习方法通常采用加权法来平衡负载均衡指标和时间指标,而预先设定的权重很难适应多变的云环境。针对上述局限性,本文在策略学习方法的基础上提出了一个约束优化问题,并提出了两阶段强化学习方法 TSRLB 作为负载均衡任务调度问题的解决方案。通过跟踪仿真,我们证明了 TSRLB 算法在平均完成时间和负载平衡这两个指标上优于传统算法和现有的强化学习方法。
For information in English, please click here
TSRLB: A Two-Stage Reinforce LearningAlgorithm for Load Balancing Task Scheduling
Abstract:The issue of task scheduling in cloud environments is a well-explored challenge. In load balancing task scheduling, currently available reinforcement learning methods usually use a weighting approach to balance load balancing metrics and time metrics, and the pre-specified weights are difficult to adapt to the variable cloud environment. To address the limitations, we formulate a constrained optimization problem on the basis of policy learning methods and propose a two-stage reinforce learning method, TSRLB, as a solution to the load balancing task scheduling problem. Through a trace-driven simulation, we demonstrate that the TSRLB algorithm outperforms traditional algorithms and existing reinforcement learning methods in two metrics: mean completion time and load balancing.
Keywords: Cloud computing load balancing task scheduling deep reinforcement learning
基金:
引用
No.****
同行评议
勘误表
TSRLB: 一种基于两阶段强化学习的负载均衡任务调度算法
评论
全部评论