面向不平衡类别分布任务的持续学习方法
首发时间:2025-02-28
摘要:持续学习能够在保留旧知识的同时逐步适应新任务和新数据,尤其适用于动态数据分布和资源受限的场景。然而,在实际应用中,数据分布的不平衡问题会加剧持续学习中的灾难性遗忘,影响模型对少数类的学习能力和整体泛化性能。因此,本文提出了一种结合自适应适配器路由与在线原型学习模型的持续学习方法(Continual Learning Methods for Tasks with Imbalanced Class Distributions,ConIm),专门针对不平衡类别分布任务设计。自适应适配器路由通过为不同类别动态分配专属学习路径,强化了模型在少数类表征上的适应能力。在线原型学习模型则通过优先更新当前任务相关参数,并结合重要性加权策略保护旧任务的关键参数,实现高效的知识整合。实验结果表明,ConIm在不平衡类别数据集上优于现有持续学习方法,能够有效平衡新知识学习与旧知识保持,并显著提升多任务场景下的模型泛化能力。
关键词: 机器学习 不平衡类别数据集 自适应适配器路由 在线原型学习模型
For information in English, please click here
Continual Learning Approaches for Imbalanced Class Distribution Tasks
Abstract:Continual learning(CL) enables models to gradually adapt to new tasks and data while retaining previous knowledge, making it particularly suitable for scenarios with dynamic data distributions and limited resources. However, in practical applications, the issue of imbalanced data distributions exacerbates catastrophic forgetting in continual learning, impairing the model\'s ability to learn minority classes and its overall generalization performance. To address this challenge, this paper proposes a continual learning method specifically designed for tasks with imbalanced class distributions,called Continual Learning Methods for Tasks with Imbalanced Class Distributions(ConIm). ConIm combines adaptive adapter routing with an online prototype learning model. The adaptive adapter routing mechanism dynamically assigns dedicated learning paths for different classes, enhancing the model\'s adaptability in representing minority classes. The online prototype learning model prioritizes updating parameters relevant to the current task while protecting critical parameters of previous tasks through an importance-weighted strategy,achieving efficient knowledge integration. Experimental results demonstrate that ConIm outperforms existing continual learning methods on imbalanced datasets, effectively balancing the acquisition of new knowledge and the retention of old knowledge, and significantly improves the model\'s generalization performance in multi-task scenarios.
Keywords: Machine Learning Imbalanced Class Datasets Adaptive Adapter Routing Online Prototype Learning Model
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
面向不平衡类别分布任务的持续学习方法
评论
全部评论