基于额外信息增强的图对比学习个性化推荐系统
首发时间:2025-02-13
摘要:过去几年,图神经网络在推荐系统领域得到了广泛的研究并快速发展。传统的基于图神经网络推荐系统使用用户-项目的交互数据构建二分图,并使用图神经网络为用户和项目学习嵌入表示。大多数研究集中在改进图结构和卷积方法上,但仅使用用户-项目交互数据会存在数据稀疏性的问题,并且忽视了以下几点:1) 用户的偏好不仅体现在用户-项目交互图中,还受到社交关系的影响,例如用户-用户关系以及用户加入的群组。虽然多跳图卷积可以捕捉到一些用户-用户关系信息,但由于传播和聚合操作的影响,这些信息会随着每一跳而减弱。此外,大多数模型没有将群组信息纳入个性化推荐中。2) 用户的偏好也可以从已交互项目与其他项目之间的关系推断出来。这类信息通常被忽略。为了更好地利用用户社交信息和项目-项目间的关系信息,本文提出了一种图神经网络推荐系统--加入社交和项目关系等信息和对比学习的个性化推荐模型(EIGCL)。EIGCL利用用户-项目交互数据,基于共现关系来挖掘用户-用户和项目-项目关系信息。模型还利用用户-群组信息来得出群组-项目关系。模型针对每种类型的关系构造图出五种图:用户-项目图(U-I)、用户-用户图(U-U)、项目-项目图(I-I)、群组-用户图(G-U)和群组-项目图(G-I)。在这些图上进行卷积操作以获得用户、项目和群组的嵌入表示。模型也采用了在推荐系统中取得成功的对比学习方法,将从这五种图得到的嵌入构造成对比对。通过在两个实际数据集上的大量实验表明,EIGCL的效果超越了最新的前沿模型。
关键词: 个性化推荐 图卷积网络 社交网络 项目关系 对比学习。
For information in English, please click here
Personalized Recommendation System with Enhanced Graph Contrastive Learning based on Extra Information
Abstract:In recent years, Graph Neural Networks (GNNs) have been extensively researched and rapidly evolved in the field of recommendation systems. Traditional GNN-based recommendation systems construct bipartite graphs using user-item interaction data and employ GNNs to learn embeddings for users and items. Most research has focused on enhancing graph structures and convolution methods. However, relying solely on user-item interaction data leads to issues of data sparsity and overlooks several important aspects: 1) Users\' preferences are not only reflected in the user-item interaction graph but are also influenced by social relationships, such as user-user interactions and the groups users join. While multi-hop graph convolutions can capture some user-user relationship information, this information diminishes with each hop due to propagation and aggregation operations. Moreover, most models do not incorporate group information into personalized recommendations. 2) Users\' preferences can be inferred from the relationships between interacted items and other items, which is often overlooked. To better leverage user social information and item-item relationship information, this paper proposes a Graph Neural Network recommendation system - an Enhanced model Incorporating social and item relationship information along with Contrastive Learning for personalization (EIGCL). EIGCL utilizes user-item interaction data to mine user-user and item-item relationship information based on co-occurrence relationships. The model also leverages user-group information to derive group-item relationships. It constructs five types of graphs for each kind of relationship: User-Item graph (U-I), User-User graph (U-U), Item-Item graph (I-I), Group-User graph (G-U), and Group-Item graph (G-I). Convolutions are performed on these graphs to obtain embeddings for users, items, and groups. The model also adopts the successful contrastive learning approach used in recommendation systems to construct contrastive pairs from the embeddings derived from these five types of graphs. Extensive experiments on two real-world datasets demonstrate that EIGCL outperforms the latest state-of-the-art models.
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于额外信息增强的图对比学习个性化推荐系统
评论
全部评论