屏幕内容视频帧内预测模式快速决策算法
首发时间:2025-02-26
摘要:随着网络技术的快速发展,视频数据量呈现爆发式增长,视频编码技术因此变得尤为重要。视频编码技术通过压缩视频数据,使得视频能够在有限的带宽和存储空间下进行传输和存储。然而,现有的视频编码技术主要针对自然图像优化,对于屏幕内容视频的压缩效率和视觉质量存在不足。本文旨在分析VP9编码器帧内预测模式决策算法,并提出一种基于卷积神经网络(Convolutional Neural Network, CNN)和屏幕内容特性的屏幕内容视频帧内预测模式快速决策算法。该算法在保证较低质量损失的前提下,满足了实时性要求,有效提高了编码效率和视觉质量。本文首先回顾了视频编码技术的背景和研究目的,然后详细分析了VP9编码标准帧内预测模式决策算法,并提出了改进方案。经实验验证,本文提出的算法在降低计算复杂度的同时,保持了编码视频的图像质量,与现有帧内预测模式决策算法相比,展现出了较好的性能。
For information in English, please click here
Fast Intra Prediction Mode Decision Algorithm for Screen Content Video
Abstract:With the rapid development of network technology, the volume of video data has experienced explosive growth, making video coding technology particularly crucial. Video coding technology compressesFast Intra PreFast Intra Prediction Mode Decision Algorithm for Screen Content Videodiction Mode Decision Algorithm for Screen Content Video video data, enabling videos to be transmitted and stored within limited bandwidth and storage space. However, existing video coding technologies are mainly optimized for natural images, resulting in deficiencies in the compression efficiency and visual quality of screen content videos. This paper aims to analyze the intra prediction mode decision algorithm of the VP9 encoder and proposes a fast intra prediction mode decision algorithm for screen content videos based on the Convolutional Neural Network (CNN) and the characteristics of screen content. This algorithm meets the real-time requirements while ensuring low quality loss, effectively improving the coding efficiency and visual quality. Firstly, this paper reviews the background and research objectives of video coding technology. Subsequently, it elaborates on the analysis of the intra prediction mode decision algorithm of the VP9 coding standard and presents an improvement scheme. Through experimental verification, the algorithm proposed in this paper reduces the computational complexity while maintaining the image quality of the encoded video. Compared with existing intra prediction mode decision algorithms, it demonstrates excellent performance.
Keywords: Computer applications video compression screen content coding convolutional neural network
基金:
引用
No.****
同行评议
勘误表
屏幕内容视频帧内预测模式快速决策算法
评论
全部评论