多模态特征融合驱动的恶意软件检测模型优化与应用
首发时间:2025-02-25
摘要:针对Android恶意软件检测中单模态特征覆盖不足、融合方式粗粒度的问题,提出一种基于注意力机制的多模态动态自适应融合模型(MDAFM)。通过设计跨模态语义对齐模块,将静态特征(权限声明、字节码图像)与动态特征(系统调用图、网络流量时序)在隐空间进行映射,解决特征空间异构性问题;结合动态加权融合策略与双通道分类器,实现细粒度特征交互与多任务协同检测。实验表明,该模型在Drebin和CICAndMal2017数据集上的平均F1-score达96.8%,较DeepAMD提升6.2%,对抗样本(FGSM攻击)检测F1-score仅下降4.1%,检测时延低至156ms,满足移动端实时性需求。结果表明,多模态特征融合可有效提升复杂攻击场景下的检测鲁棒性,为轻量化与增量学习研究奠定基础。
关键词: 网络空间安全 Android恶意软件检测 多模态特征融合 注意力机制 对抗鲁棒性 动态行为分析
For information in English, please click here
Enhanced Malware Detection Model Driven by Multi-modal Feature Fusion
Abstract:To solve the problem of insufficient coverage of single mode feature and coarse-grained fusion mode in Android malware detection, a multi-mode dynamic adaptive fusion model (MDAFM) based on attention mechanism is proposed. By designing a cross-modal semantic alignment module, static features (permission declaration, bytecode image) and dynamic features (system call graph, network traffic sequence) are mapped in hidden space to solve the problem of heterogeneity of feature space. Combining dynamic weighted fusion strategy and two-channel classifier, fine-grained feature interaction and multi-task cooperative detection are realized. Experiments show that the average F1-score of the model on Drebin and CICAndMal2017 data sets reaches 96.8%, which is 6.2% higher than that of DeepAMD. F1-score of adversarial sample (FGSM attack) detection only decreases by 4.1%, and detection delay is as low as 156ms, meeting the real-time requirements of mobile terminals. The results show that multi-modal feature fusion can effectively improve the detection robustness in complex attack scenarios, and lay a foundation for lightweight and incremental learning research.
Keywords: Security in cyberspace Android malware detection Multimodal feature fusion Attention mechanism Antagonistic robustness Dynamic behavior analysis
基金:
引用
No.****
同行评议
勘误表
多模态特征融合驱动的恶意软件检测模型优化与应用
评论
全部评论