End-to-End Virtual Shadow Generation Based on Shadow Detection
首发时间:2024-03-29
Abstract:With the rapid development of the augmented reality field, virtual shadow generation technology has garnered widespread attention. However, traditional methods involve complex computational requirements for environmental modeling and display, and the effectiveness of using fewer 3D parameter estimation methods is suboptimal. To address these issues, this paper proposes an end-to-end virtual shadow generation method based on shadow detection. Firstly, we introduce a shadow detector designed to identify real shadows and their corresponding occlusions in the background context, while also learning the mapping relationship between occlusions and shadows in the current scene. Secondly, we devise a virtual shadow generator. Utilizing the mapping relationship obtained from the detector as guidance information, it is encoded into the generator's input. Through feature extraction, encoding, and decoding of the input information, we ultimately obtain the virtual shadow image. Experimental results demonstrate the exceptional performance of the proposed virtual shadow generation method. In comparison to existing methods for direct virtual shadow generation, our approach significantly enhances the harmony and realism of the synthesized images.
keywords: shadow detection virtual shadow generation deep learning augmented reality
点击查看论文中文信息
基于阴影检测的端到端虚拟阴影生成算法
摘要:随着增强现实领域的迅猛发展,虚拟阴影生成技术引起了广泛关注。然而,传统方法在进行环境建模和显示时存在复杂的计算需求,而采用较少的3D参数估计方法效果欠佳。为解决上述问题,本文提出了一种基于阴影检测的端到端虚拟阴影生成方法。首先,我们引入了一种阴影检测器,用于识别背景上下文中的真实阴影及其相应的遮挡物,并学习当前场景中遮挡物和阴影之间的映射关系。其次,我们设计了一种虚拟阴影生成器。根据检测器获得的映射关系,将其作为引导信息编码到生成器的输入中。通过对输入信息进行特征提取、编码和解码,我们最终获得了虚拟阴影图像。实验结果表明,本文提出的虚拟阴影生成方法表现出卓越的效果。与现有的直接生成虚拟阴影方法相比,本方法显著提升了合成图像的和谐感和真实感。
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于阴影检测的端到端虚拟阴影生成算法
评论
全部评论