基于UViT-CycleGAN的鲁棒性物理对抗样本生成方法
首发时间:2024-03-29
摘要:人工智能的飞速发展,在便利生活的同时,也引起诸多安全问题。物理对抗攻击是揭示现实中深度学习模型安全问题并促进对抗防御技术的重要研究领域。然而,由于各种物理约束的限制,物理对抗样本面临着鲁棒性不足的困境。本文针对物理世界中的物理约束会降低物理对抗样本对抗性的问题,提出了一种基于UViT-CycleGAN的鲁棒性物理对抗样本生成方法,使用UNet-ViT作为生成器改良CycleGAN,在进行模拟图像数字到物理转换的过程中的同时寻找贴合实际物理图像分布的扰动,以生成更加真实的鲁棒性物理对抗样本。实验结果表明,UViT-CycleGAN无论攻击效率还是攻击成功率都优于FGSM、PGD、CW、AdvGAN,并在增强物理对抗样本鲁棒性方面比目前主流的鲁棒性增强框架EOT、RP2以及D2P取得了更好的成果。
关键词: 鲁棒性 物理对抗样本 循环一致性生成式对抗网络
For information in English, please click here
Robust Physical Adversarial Example Generation Method Based on UViT-CycleGAN
Abstract:The rapid development of artificial intelligence, while facilitating everyday life, has also raised numerous security concerns. Physical adversarial attacks have emerged as a crucial research area revealing security issues in real-world deep learning models and promoting adversarial defense technologies. However, due to various physical constraints, physical adversarial examples face challenges in robustness. This paper addresses the issue that physical constraints in the real world can diminish the adversariality of physical adversarial examples. It proposes a robust physical adversarial example generation method based on UViT-CycleGAN, which uses UNet-ViT as the generator to refine CycleGAN. This method seeks disturbances that fit the actual physical image distribution during the process of simulating digital to physical image transformations, thereby generating more realistic and robust physical adversarial examples. Experimental results show that UViT-CycleGAN surpasses FGSM, PGD, CW, AdvGAN in terms of attack efficiency and success rate, and achieves better outcomes in enhancing the robustness of physical adversarial examples compared to current mainstream robustness enhancement frameworks EOT, RP2, and D2P.
Keywords: Robustness Physical Adversarial Examples Cycle-Consistent Adversarial Networks
基金:
引用
No.****
同行评议
勘误表
基于UViT-CycleGAN的鲁棒性物理对抗样本生成方法
评论
全部评论