基于数据增强和对比学习的新意图发现模型
首发时间:2024-03-18
摘要:任务型对话系统广泛应用于客户服务支持、虚拟助手等领域。然而,目前大多数任务型对话系统仅专注于完成预先定义的领域意图内的任务,较少从用户请求中挖掘潜在的新意图,这限制了对话系统的智能化发展。因此,本论文针对此问题提出了一种基于数据增强和对比学习的新意图发现模型(DACL)。该模型采用了两个数据增强方法,并设计相应的损失函数,运用对比学习进行联合训练,引入了有效的监督信号,缓解了BERT模型的各向异性。经过实验验证,与基线模型进行相比,该方法显著提升了聚类性能。
For information in English, please click here
New Intent Discovery Model Based on Data Enhancement and Contrastive Learning
Abstract:Task-oriented dialogue systems are widely employed in fields such as customer service support and virtual assistants. However, the majority of current task-oriented dialogue systems primarily focus on completing tasks within predefined domain intents, with less emphasis on uncovering potential new intents from user requests. This limitation constrains the intelligent evolution of dialogue systems. Therefore, this paper proposes the new intent discovery model based on data augmentation and contrastive learning (DACL) to address this issue. The model incorporates two data augmentation methods, designs corresponding loss functions, employs contrastive learning for joint training, introduces effective supervisory signals, and mitigates the isotropy of the BERT model. Through experimental validation, compared to the baseline model, this approach significantly enhances clustering performance.
Keywords: artificial intelligence dialogue system intent clustering data augmentation contrastive learning
基金:
引用
No.****
同行评议
勘误表
基于数据增强和对比学习的新意图发现模型
评论
全部评论