基于对比学习的多模态注意力网络虚假信息检测方法
首发时间:2023-11-24
摘要:针对近年来网络空间中大量涌现的多模态虚假信息难以有效检测的问题,重点提出一种基于对比学习预训练和注意力机制的多模态虚假信息检测方法,使用对比学习对不同模态数据之间进行特征对齐和潜在关系学习,并采用注意力机制实现不同模态特征之间的交互,通过特征融合完成模型构建,最终实现对虚假信息的精准检测。所提出的模型对于多模态虚假信息的检测相较于当前主流的方法取得了更好的效果,基本能够对虚假信息实现更准确的识别和检测。
关键词: 网络空间安全 虚假信息检测 多模态特征融合 对比学习 注意力机制
For information in English, please click here
Contrastive learning-based multimodal attention networks for false information detection method
Abstract:Multi-modal false information has intensively emerged in the cyberspace in recent years and its effective detection is difficult. Facing this problem, this paper focuses on proposing a multi-modal false information detection method based on contrastive learning pre-training and attention mechanism, in which contrastive learning is used to detect different modalities. Feature alignment and potential relationship learning are performed among data, and the attention mechanism is used to realize the interaction between different modal features. Model construction is completed through feature fusion, and ultimately accurate detection of false information is achieved. Compared with the current mainstream methods, the proposed model herein achieves better results in detecting multi-modal false information , and can basically achieve more accurate identification and detection of false information.
Keywords: cyberspace security false information detection multimodal feature fusion contrastive learning attention mechanism
基金:
引用
No.****
同行评议
勘误表
基于对比学习的多模态注意力网络虚假信息检测方法
评论
全部评论