Poisson process Models of extreme volatility of Bitcoin prices
首发时间:2023-07-20
Abstract:In recent years, digital currencies based on blockchain technology have received widespread attention from global investors and financial regulatory agencies, and the dramatic fluctuations of their price are the major conerns. Previous studies on asset price fluctuations mainly focused on traditional capital markets such as stocks and bonds, while there are less research on price fluctuations in the emerging digital currency market i.e. the Bitcoin. Bitcoin is a currency with intrinsic value that is difficult to quantify, produced entirely by computer computing power, and has no endorsement from any national government or financial institution as a financial asset. Therefore, as a financial asset, the Bitcoin prices often experience violent fluctuations due to numerous complex factors. In this study, two Poission process models, non-homogeneous Poisson process (NHPP) model and the fractional Poisson process (FPP) model, are used to fit the violent Bitcoin price volatility sequence. The NHPP model generalizes the intensity λ of the Poisson process to a function λ(t), reflecting the non-stationarity of violent Bitcoin price fluctuation events. The fractional Poisson process is also a generalization of the homogeneous Poisson process model, where the time interval distribution is extended from the exponential distribution to the Mittag-Leffler distribution. The fractional Poisson process reflects long-term memory effects. In this study, two Poisson point process models are applied to the event sequence of sharp fluctuations in the price of Bitcoin through estimating model parameters and graphical evaluation model fitting, and the ocurruing of the next is aslo predicted and analyzed.
keywords: Volatility Bitcoin price nonhomogeneous Poisson process Peak-over-Threshold Continuous Time Random Exceedances Fractional Poisson process
点击查看论文中文信息
比特币价格剧烈波动的泊松过程模型
摘要:近几年来,以区块链技术为基础的数字货币受到全球投资者以及金融监管机构的广泛关注,其价格的剧烈波动现象是其受到关注的主要原因。以往的对于资产价格波动的研究主要针对传统资本市场如股票、债券等,而对于以比特币为首的新兴数字货币市场的价格波动研究较少。比特币是一种内在价值难以被量化的货币,完全依靠计算机算力产出,没有任何国家政府以及金融机构为其背书。因此作为一种金融资产,比特币价格必定会由于众多复杂因素而常常产生剧烈波动。本文分别用基于极值理论(EVT)的非齐次泊松过程(NHPP)模型和分数阶泊松过程(FPP)模型拟合了比特币价格剧烈波动事件序列。NHPP模型将泊松过程的强度λ推广为函数λ(t),反映了比特币价格剧烈波动事件的非平稳性。由于很多物理、金融等事件之间的等待时间服从重尾分布,事件时间的集合是类似分形的,我们使用一个新的模型Mittag-Leffler分布来描述比特币价格剧烈波动事件泊松过程的间隔时间,即分数阶泊松过程模型。分数阶泊松过程模型也是齐次柏松过程模型的推广,时间间隔分布由指数分布推广为Mittag-Leffler分布。分数阶泊松过程反映了长期记忆效应。本文通过估计模型参数、图解法评估模型拟合将两种泊松过程模型应用于比特币价格剧烈波动的事件序列,并推断分析下一个事件发生的时间。
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
比特币价格剧烈波动的泊松过程模型
评论
全部评论