低照度图像增强算法研究
首发时间:2023-06-21
摘要:目前,有许多图像由于光照强度低、相机感光度度限制等原因,存在图像前景昏暗的问题,严重影响图像的后续处理和应用。本文从算法原理、增强效果、适用范围等方面对近年来的低照度图像增强算法进行了研究和改进。本文重点研究了结合卷积神经网络的RetinexNet算法。通过反复仿真实验,探究算法中各参数对其性能的影响,进而提出了该算法的改进方法。改进内容主要包括:改进了RetinexNet算法的训练数据集,并结合Retinex理论和卷积神经网络,搭建了包含增强,调整和重建三部分的简易网络,各部分网络可实现自动端到端、数据驱动。我们的方法不仅实现了视觉上令人舒适的低光增强质量,而且图像分解的表现良好。
关键词: Retinex理论 深度学习 图像增强 低照度图像
For information in English, please click here
RESEARCH ON LOW-ILLUMINATION IMAGE ENHANCEMENT ALGORITHM
Abstract:At present, due to low light intensity and camera sensitivity limitation, many images are generated with low illumination, which seriously affects the subsequent processing and application of images. In this paper, a study aimed to improve the existing low-illumination image enhancement algorithms is carried out from the aspects of algorithm principle, enhancement effect and application scope.This study focuses on the integration of Convolutional Neural Networks (CNNs) into the RetinexNet algorithm. Through extensive simulation experiments, the impact of different parameters on the algorithm\'s performance is investigated, leading to proposed enhancements for the algorithm. The improvements primarily involve augmenting the training dataset of the RetinexNet algorithm and constructing a simplified network that comprises three components: enhancement, adjustment, and reconstruction. By combining Retinex theory and CNNs, this network facilitates automatic end-to-end processing and data-driven capabilities.our method not only achieves visually pleasing quality for low-light enhancement but also provides a good representation of image decomposition.
Keywords: Retinex theory Deep learning Image enhancement Low-illumination images
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
低照度图像增强算法研究
评论
全部评论