基于快速CUR分解的灵活矩阵压缩算法
首发时间:2023-05-22
摘要:矩阵数据广泛应用于各个领域,然而矩阵大小的增加可能导致相当大的存储和带宽成本。值得注意的是,多数矩阵数据在自然界中表现出低秩结构,可以利用分解技术进行压缩。本文提出了一种基于CUR分解的低秩矩阵压缩算法,与SVD压缩相比,它具有更强的可解释性。然而,现有的CUR解决方案缺乏快速灵活的压缩效果,无法根据尺寸压缩要求动态调整矩阵,同时保持最大的近似精度。本文通过将其形式化为确定性CUR矩阵分解问题来解决CUR行/列选择问题, 涉及选择矩阵$\textbf{W}$。为了实现快速压缩,本文提出了一种有效加速求解参数矩阵$\textbf{W}$的算法。本文方法揭示了$\textbf{W}$中的向量在指示行和列在形成行子空间和列子空间中的重要性。基于此,本文开发了一种基于选择矩阵$\textbf{W}$的向量排序的灵活压缩算法。该方法保证了所需压缩比,同时保持了最大的近似精度。在合成数据和真实数据上的实验表明,该算法能够按照期望的压缩比实现快速、精确的矩阵压缩。
For information in English, please click here
Flexible matrix compression algorithm based on fast CUR decomposition
Abstract:Matrix data is extensively utilized across various domains, nonetheless, the increasing size of matrix data can lead to extensive storage and bandwidth costs. It is worth noting that most matrix data in nature exhibit a low-rank structure that can be exploited for matrix compression using decomposition techniques.This paper presents a compression algorithm for low-rank matrices based on CUR decomposition offering enhanced interpretability compared to SVD compression. However, existing CUR solutions lack fast and flexible compression that can dynamically adjust the matrix according to size compression requirements while preserving maximal approximation accuracy. %and addresses the CUR row and column selection issue %by formulating a deterministic CUR matrix decomposition problem involving a selection matrix $\textbf{W}$. To achieve rapid compression, this paper proposes an algorithm that effectively accelerates the process of solving the parameter matrix $\textbf{W}$. The approach in this paper reveals that the vectors in $\textbf{W}$ can indicate the importance of a row and a column in forming the row subspace and column subspace. Leveraging this insight, this paper develops a flexible compression algorithm based on the sorted vectors in the selection matrix $\textbf{W}$. This method ensures the required compression ratio while maintaining maximal approximation accuracy. The experiments on synthesized and real data illustrate that the algorithm can deliver fast and precise matrix compression under the desired Compression ratio.
Keywords: Artificial intelligence Matrix compression Matrix decomposition CUR decomposition
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于快速CUR分解的灵活矩阵压缩算法
评论
全部评论