基于密集连接空洞编码器的轻量级目标检测网络
首发时间:2023-04-11
摘要:针对参数量和计算量基于密集连接空洞编码器的轻量级目标检测网络大的目标检测模型在计算能力和资源有限的设备上运行困难的问题,提出了一种基于密集连接空洞编码器的轻量级目标检测网络。参考基于深度可分离卷积的ShuffleNetv2网络,对CenterNet的主干特征提取网络进行优化。通过引入多个级联的空洞卷积,并进行密集跳层连接,构建了密集连接空洞编码器(Light Dense Dilated Encoder, LDDE),LDDE通过改变空洞卷积的膨胀率,在多个尺度上扩大感受野,显著提高了目标检测性能。在PASCAL VOC数据集上,LDDE-Net的平均精度均值(mean average precision)mAP@0.5高于轻量化模型YOLOv4-tiny,并且参数仅为YOLOv4-tiny的68.65%。在NVIDIA GeForce RTX 2080 Ti上,LDDE-Net的FPS为106.1。在嵌入式平台NVIDIA Jetson Nano上,LDDE-Net的推理时间为120ms。
关键词: 模式识别与智能系统;空洞卷积;轻量化 计算机视觉;深度学习
For information in English, please click here
A Lightweight Object Detection Network Based on Dense Dilated Encoder Net
Abstract:Aiming at the difficulty of running the CenterNet network with a large number of parameters and computation on devices with limited computing power and resources, a lightweight object detection network based on dense dilated encoder is proposed. Referring to the ShuffleNetv2 network based on depthwise separable convolutions, the backbone of CenterNet is optimized. A Light Dense Dilated Encoder (LDDE) is constructed by introducing multiple concatenated dilated convolutions and performing dense skip-layer connections. LDDE expands the receptive field at multiple scales by changing the dilation rate of dilated convolutions. which significantly improves the object detection performance. On the PASCAL VOC dataset, the mean average precision of LDDE-Net iA Lightweight Object Detection Network Based on Dense Dilated Encoder Nets higher than the lightweight model YOLOv4-tiny, and the parameters are only 68.65% of YOLOv4-tiny. On the NVIDIA GeForce RTX 2080 Ti, LDDE-Net has an FPS of 106.1. On the embedded platform NVIDIA Jetson Nano, the inference time of LDDE-Net is 120ms.
Keywords: pattern recognition and intelligent systems dilated convolution lightweight, computer vision deep learning
基金:
引用
No.****
同行评议
勘误表
基于密集连接空洞编码器的轻量级目标检测网络
评论
全部评论