一种基于联合分布的跨域推荐算法
首发时间:2023-04-10
摘要:随着移动互联网的快速发展,面向用户的各类购物平台、社交网络以及民宿平台等在线服务也吸引了越来越多的人群来使用。用户在使用这类服务时,往往会留下大量的数据,通过对这些数据进行分析,可以得到用户在各个领域中隐藏的行为偏好等信息。此时,如何对此类信息进行利用,以便为用户推荐符合偏好的新物品,成为了一个挑战。目前很多研究利用跨域推荐,从辅助域的知识来帮助推荐的实现,然而很多方法需要启发式的网络设计方法。本文提出一种基于联合分布的跨域推荐算法,以一种符合直觉的方式来学习用户在两个领域中偏好的特征,并对跨域用户行为的联合分布进行建模,以达到推荐准确度提高的效果。
For information in English, please click here
A Cross Domain Recommendation Algorithm Based on Joint Distribution
Abstract:With the rapid development of the mobile Internet, online services such as shopping platforms, social networks and homestay platforms have also attracted more people to use. When users use these services, they often leave too many data, and through analysis of the data, information such as behavior preferences hidden by users in various fields can be obtained. Then, how to use this information to recommend new items that match the user\'s preferences becomes a challenge. Now, many studies use cross-domain recommendation to make recommendations from knowledge of auxiliary domains, but many methods require heuristic network design methods. In this paper, a cross-domain recommendation algorithm based on federated distribution is proposed to learn the characteristics preferred by users in the two domains in a more intuitive way, and to model the joint distribution of cross-domain user behavior to improvin the effect of recommendation.
Keywords: Computer Application Technology Recommendation System Joint Distribution Cross Domain Recommendation
基金:
引用
No.****
同行评议
勘误表
一种基于联合分布的跨域推荐算法
评论
全部评论