基于图像分解与注意力机制的多层人脸伪造检测框架
首发时间:2023-03-09
摘要:当前深度人脸伪造技术发展迅速,伪造方法复杂多样,这对深度伪造检测的检测能力提出了更高的要求。当前的数据集下,如何提升检测算法的泛化能力是深度伪造检测任务的主要难点之一。针对该问题,本文提出了基于图像分解与层间空间注意力传递的多层人脸伪造检测框架。相较于直接使用预训练模型,本文试图从真伪人脸间的差异部分入手,设计能够提取伪造特征的网络模型。本文采用了对原始输入进行分解,分层进行特征提取的思想,使用拉普拉斯金字塔进行图像分解工作,尽可能地将真实样本与伪造样本间差异的部分与共性部分相分离,并提出了层间注意力传递的空域注意力图共享模块以加强模型对差异部分的提取能力,从而加强检测模型地泛化能力。实验结果表明,本文提出的模型在数据集内表现优秀,在跨数据集表现上具备较强的性能。
For information in English, please click here
Multi-layer Face Forgery Detection Framework Based on Image Decomposition and Attention Mechanism
Abstract:The rapid development of deepfake technology and the complexity and diversity of deepfake methods have raised higher requirements for deepfake detection. Meanwhile, how to improve the generalization ability of detection algorithms under the current dataset is one of the main difficulties in deepfake detection. Aiming at this problem, we proposes a multi-layer deepfake detection framework based on image decomposition and inter-layer spatial attention transfer. Compared with directly using pre-trained models, we attempts to extract fake features by designing a network model that can extract differences between real and fake faces. We adopts the idea of decomposing the original input and extracting features layer by layer, using Laplacian pyramid for image decomposition to separate the differences and commonalities between real and fake samples as much as possible. The inter-layer spatial attention transfer module is proposed to enhance the model\'s ability to extract differences, thereby strengthening the generalization ability of the detection model. The experimental results show that the model proposed in this study performs well within the dataset and has strong performance in cross-dataset testing.
Keywords: face forgery detection image forensics attention mechanism
基金:
引用
No.****
同行评议
勘误表
基于图像分解与注意力机制的多层人脸伪造检测框架
评论
全部评论