一种新型粒子群算法惯性权重调整策略
首发时间:2023-03-01
摘要:针对粒子群算法容易早熟收敛和现有惯性权重调整策略存在的不足,本文将三角函数中的反正切函数引入到粒子群算法中,并对其进行变换和改进,提出了一种新的惯性权重调整策略:基于反正切函数的调整策略(Arctangent Inertia Weight Particle Swarm Optimization, ATWPSO)。为了验证ATWPSO的性能,选取Congress on Evolutionary Computation 2017(CEC 2017)中4种类型的10个函数作为测试函数,并将标准粒子群、线性惯性权重粒子群、线性微分惯性权重粒子群和多个自适应惯性权重粒子群与提出的算法ATWPSO在不同维度的测试函数下进行对比测试。实验结果表明,新提出的ATWPSO策略在求解精度以及其标准差有较好的性能,尤其在高维问题上更容易获得更高的搜索精度。
关键词: 粒子群优化 惯性权重 基于反正切函数的调整策略 收敛
For information in English, please click here
A New Inertia Weight Adjustment Strategy of Particle Swarm Optimization
Abstract:Aiming at the premature convergence of particle swarm optimization (PSO) and the shortcomings of search accuracy of existing inertia weight adjustment strategies, this paper introduces the arctangent function of trigonometric function by being transformed and improved into particle swarm optimization and proposes a new inertia weight adjustment strategy based on Arctangent function (ATWPSO). To verify the performance of ATWPSO, the standard PSO, linear weight PSO, linear differential weight PSO, and three kinds of PSO with adaptive inertia weight are selected to be tested by 10 functions of 4 types such as unimodal functions, simple multimodal functions, hybrid functions and composition functions by different dimensions which were proposed on Congress on Evolutionary Computation 2017 (CEC 2017). The experimental results show that the ATWPSO strategy proposed in this paper has better performance in solving accuracy and standard deviation, and that especially in high-dimensional problems, it is easier to obtain higher search accuracy.
Keywords: Particle Swarm Optimization Inertia Weight Adjustment Strategy Based on Arctangent Function Convergence
基金:
引用
No.****
同行评议
勘误表
一种新型粒子群算法惯性权重调整策略
评论
全部评论