基于多任务学习的双曲空间知识增强推荐算法
首发时间:2022-04-08
摘要:推荐系统旨在为用户推荐个性化在线内容和物品信息,有效缓解了信息过载问题。近年来,系列相关工作发现知识图谱中丰富的语义信息可以改善协同过滤算法性能。然而,现有基于知识图谱的推荐系统在欧氏空间中进行图嵌入,无法充分捕获和建模协同知识图中蕴含的层次性结构信息和复杂逻辑关系。提出一种基于多任务学习的双曲空间知识增强推荐算法 MHKR。该方法在预设定三层双曲空间中初始化用户、物品和知识实体的嵌入表示,然后通过个性化推荐模块和知识图嵌入模块学习和优化嵌入表示,最后基于多任务学习框架对两个任务进行联合训练。在三个基准数据集上的实验结果表明 MHKR 与现有方法相比达到了更好的推荐效果。
关键词: 推荐系统 知识图谱 双曲几何 度量学习 多任务学习
For information in English, please click here
A multi-task learning approach in hyperbolic space for Knowledge-Enhanced Recommendation
Abstract:Recommender systems aim to recommend personalized online content and information for users, effectively alleviating the information overload problem. In recent years, a series of works have found that the rich semantic information in knowledge graphs can benefit collaborative filtering methods. Existing knowledge graph-based recommender systems learn entity representations in Euclidean space, which cannot adequately capture the hierarchical structural information and complex logical relationships embedded in the collaborative knowledge graph. To this end, this paper proposes a multi-task approach in hyperbolic space for knowledge-enhanced recommendation (MHKR). MHKR initializes embeddings in a predefined three-level hyperbolic space, then optimizes embeddings through a personalized recommendation module and a knowledge graph embedding module, and finally trains the two tasks jointly based on a multi-task learning framework. Empirical results on three benchmark datasets show that MHKR outperforms state-of-the-art methods.
Keywords: Recommendation System;Knowledge Graph;Hyperbolic Geometry;Metric Learning;Multi-task Learning
基金:
引用
No.****
同行评议
勘误表
基于多任务学习的双曲空间知识增强推荐算法
评论
全部评论