基于光的新型随机奇异值分解
首发时间:2022-03-07
摘要:随机奇异值分解算法是对奇异值分解算法的改进,在数据压缩、信号处理和图像降噪等方面具有广泛的应用,但日益剧增的矩阵规模对硬件平台提出了更高需求。为此,本文提出了基于空间光计算平台的随机奇异值分解方案。通过空间光调制器将初始的矩阵信息加载到光信号上,利用光学复杂介质的随机投影性质将矩阵降维,最后对已降维的矩阵进行奇异值分解。该方案不再需要生成和存储随机高斯矩阵,解决了限制RSVD应用的瓶颈问题。实验结果表明,随机奇异值分解的精度受矩阵元素量化精度、矩阵降维采样率、散射介质等因素的影响。在1550nm的波长下,如果矩阵元素量化时采用像素值100×100的宏像素块,矩阵降维时设置采样率为0.5,则随机奇异值分解结果的相对误差可达0.1以下。除此之外,本文利用该方案完成了图像压缩任务,为进一步研究大规模图像矩阵处理算法提供了新思路。
关键词: 随机奇异值分解 光计算 复杂介质 矩阵降维 图像压缩
For information in English, please click here
A novel random singular value decomposition based on optica
Abstract:Random singular value decomposition (RSVD) is an improvement of singular value decomposition (SVD) algorithm. RSVD is widely used in data compression, signal processing and image noise reduction. However, the increasing matrix scale puts forward higher requirements for the hardware platform.In order to achieve RSVD of large-scale matrices, this paper presents a scheme of RSVD based on space optical computing platform.The initial matrix information is loaded onto the optical signal through the spatial light modulator, and the dimension of the matrix is reduced by using the random projection property of the optical complex medium. Finally, the reduced dimension matrix is decomposed by singular value decomposition.This scheme no longer needs to generate and store random Gaussian matrix, which solves the bottleneck problem restricting the application of rsvd. The experimental results show that the accuracy of radom singular value decomposition is affected by the quantization accuracy of matrix elements, matrix dimension reduction sampling rate, scattering medium.At 1550nm wavelength, 0.5sample ratio, and the mcopixel is 100×100, the relative error of RSVD can be less than 0.1 when ground-glass is used as a complex medium.In addition, this paper uses this scheme to complete the task of image compression, which provides a new idea for the further study of large-scale image matrix processing algorithm.
Keywords: random singular value decomposition optical computing optical complex medium matrix dimensionality reduction image compression
基金:
引用
No.****
同行评议
勘误表
基于光的新型随机奇异值分解
评论
全部评论