纳米抗体结构的精准预测:分子模拟与深度学习
首发时间:2022-03-30
摘要:抗体是一种重要的蛋白,在疾病的预防、诊断与治疗上的应用与日俱增。最近,单域骆驼科的重链可变域抗体,简称单域抗体(VHH)或纳米抗体(Nbs)逐渐成为一种高效益低成本且高度稳定的全长抗体的替代选择。人们对高通量表位鉴定的需求日益增长,而表位鉴定要基于有着共同骨架不同互补决定区(CDRs)的可变结构域精确结构模建。其中CDR3 loop的柔性最大,经常被发现能深入目标膜蛋白腔内,这也正是Nbs成功的根源之一。在在本次研究中,我们测试了四种方法对Nbs的预测精度,分别从基于物理模型与深度学习两个角度,其中基于物理模型方向使用了传统同源建模方法与高斯加速分子动力学(GaMD)模拟优化;深度学习方向则使用了最近成果显著的AlphaFold2与RoseTTAFold。对比四种方法的预测结果,我们针对不同类别的Nbs提出了预测意见,有助于对Nbs进行精准的预测。
关键词: 计算机辅助药物设计 结构预测 纳米抗体 分子动力学模拟
For information in English, please click here
Accurate Prediction of Nanobody Structure:Molecular Modeling and Deep Learning
Abstract:Antibodies are kind of important protein and a rapidly growing class of therapeutics. Recently, single domain camelid VHH antibodies, and their recognition nanobody domain(Nb) apperaed as a cost-effective highly stable based on accurate structural modeling of the variable domains that share a common fold and differ in the Comlementaryity Determining Regions (CDRs).The success of nanobodies is rooted in the simplicity and robustness of VHH scaffold and in its characteristic variability at the most variable CDR3 loop, which is frequently found to penetrate deeply into cavities of membrane protein targets. In this study, we tested the prediction accuracy of four methods for Nbs from the traditional physically based models methods and deep learning methods. In the way of physically based models, we used homologous modeling and Gaussian accelerated molecular dynamics (GaMD) simulation optimization methods; And Alphafold2 and RoseTTAFold, which have achieved remarkable results recently are the methods of deep learning. Comparing the prediction results of the four methods, we put forward prediction opinions for different types of Nbs, which is helpful to accurately prediction.
Keywords: CADD Structure prediction Nanobody Molecular dynamics simulation
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
纳米抗体结构的精准预测:分子模拟与深度学习
评论
全部评论