一种基于神经网络的新型数据降维框架
首发时间:2022-02-16
摘要:数据降维是一种直接有效的分析和可视化高维数据的方法,目前虽已存在多种数据降维的方法,但并未对这些降维方法进行合理有效地统一。本文基于神经网络的方法提出了一种通用可拓展的数据降维方法框架DRNN,该框架根据降维方法的基本原理设计出了代价函数,以便利用神经网络更好地实现原有数据降维方法。实验结果表明,DRNN框架可获得与原降维方法相当或更优的数据降维效果,并且能够有效解决原降维方法中存在的样本外问题。
关键词: 神经网络,数据降维,代价函数,降维框架
For information in English, please click here
A Novel Dimensionality Reduction Framework Based on Neural Network
Abstract:Dimensionality reduction is a direct and effective method for analyzing and visualizing high-dimensional data. Although there are a variety of data dimensionality reduction methods, these methods have not been reasonably and effectively unified. This paper presents a generic and scalable dimensionality reduction framework(DRNN) based on Neural Network, which designs a generic cost function form according to the basic principle of the dimensionality reduction, so that the neural network can be used to better realize the original data dimensionality reduction. Experimental results show that the DRNN framework can achieve the same or better dimensionality reduction performance than the original method, and can effectively solve the out-of-sample problems existing in traditional dimensionality reduction method.
Keywords: Neural network Data dimension reduction Cost function Dimensionality reduction generalized framework
基金:
引用
No.****
同行评议
共计0人参与
勘误表
一种基于神经网络的新型数据降维框架
评论
全部评论