基于互信息引导遗传算法的贝叶斯网络结构学习
首发时间:2021-12-09
摘要:从数据中学习贝叶斯网络结构被证明是NP-难的,基于演化计算的方法在解决此类问题上有良好的表现,然而由于搜索的随机性和对潜在信息的利用不足,对结构的改变往往是盲目的,致使学习效率低下且效果不佳。 为此,本文提出了一种基于互信息的的遗传算法用于解决贝叶斯网络结构学习问题。 在初始化阶段,利用互信息对初始搜索空间进行二次约束获得了评分更高的初始种群且不失多样性;在搜索阶段,利用互信息和种群支持度挖掘出了种群中潜在的优势信息, 并开发了一种新的交叉算子使得优势基因在后代中得到更多保留; 此外在结构环路的去除上,利用互信息作为指导最大程度避免了对优势基因的删除,使得算法对无效解的处理简单且高效。 结合以上三种策略,我们的算法显著加强了搜索的效率和准确度。 在5个各种规模的基准网络上的测试结果表明本文所提算法可以用更少的评价次数获得更准确的贝叶斯网络结构。
For information in English, please click here
Mutual information-guided Genetic Algorithm for BN structure learning
Abstract:Learning the structure of Bayesian networks (BNs) from data is an NP-hard problem, Evolutionary algorithms (EAs) have shown satisfying results regarding learning the structure of BNs, while the insufficient use of potential information in the search process results in low search efficiency and low learning accuracy. Therefore, we propose an Mutual information (MI) guided genetic algorithm (MIGA) for BN structure learning (BNSL) in this paper to effectively search BN structures. In the initialization phase of MIGA, the population is generated by adding additional constraints based on MI to reach a higher score without losing diversity. By employing normalized MI and defining the population support, we can identify the potential dominance in the population which helps design a novel crossover operator. Based on the proposed crossover operator in MIGA, the dominant genes are preserved at a higher probability. Moreover, with the guidance of MI regarding removing loops from the structures, invalid solutions can be handled in a straightforward and practical way. The proposed MIGA is evaluated on five well-known benchmark datasets and compared with four state-of-the-art GA-based BNSL algorithms. Experimental results show that MIGA outperforms the compared algorithm in terms of search efficiency and learning accuracy.
Keywords: Bayesian networks, Structure learning, Genetic algorithm, Mutual information, Crossover operator
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于互信息引导遗传算法的贝叶斯网络结构学习
评论
全部评论