岩土材料应力应变关系及强度准则
首发时间:2021-11-12
摘要:经典弹塑性力学把材料弹塑性变形过程中应变分为弹性应变和塑性应变两个部分,为区分弹性应变和塑性应变,研究人员提出了屈服面的概念,分为单屈服面、双屈服面、多重屈服面等,应力状态在屈服面以内产生弹性应变,应力状态在屈服面以外产生塑性应变,事实上弹塑性变形过程中,弹性应变和塑性应变同时发生,弹性力学中定义的材料常数不再适用。本文在多种材料试验的基础上,提出连续变形弹塑性模型,弹塑性变形是连续变形,在P-q坐标系中不存在弹性区域和塑形区域,每一条应力--应变曲线都包含材料的全部力学信息。在常规三轴压缩实验中,σ1-σ3=a1*(arctan((ε1-ε3)*c1)- e/( 2*c1*c1*(σm+σm0)^n1) *LN(((c1*c1*(ε1-ε3))^ 2+1)),εv=εvm0+a4*(arctan((σm+σm0 )*c4)-e4*(σ1-σ3)^n4 *LN(((c4*(σm+σm0))^ 2+1)),压子午线方程(σ1-σ3)max= a1*(arctan(( (σm+σm0)^n1)*c1*c1*/e1)- e1/(2*c1*c1*(σm+σm0)^n1)*LN(((c1*c1*(c1*(σm+σm0)^n1/e1) 2+1))。实验数据验证表明连续变形弹塑性模型能更好地反映岩土材料的应力-应变特性。
关键词: 岩土材料 本构方程 强度准则 连续变形模型 应力应变关系。
For information in English, please click here
Stress-strain relationship and strength criterion of geotechnical materials
Abstract: In classical elastic-plastic mechanics, the strain in the process of material elastic-plastic deformation is divided into elastic strain and plastic strain. In order to distinguish between elastic strain and plastic strain, researchers put forward the concept of yield surface, which is divided into single yield surface, double yield surface and multiple yield surface. The stress state produces elastic strain within the yield surface while plastic strain outside the yield surface, In fact, in the process of elastic-plastic deformation, elastic strain and plastic strain occur at the same time, so the material constant defined in elasticity is no longer applicable. Based on a variety of material tests, this paper puts forward the continuous deformation elastic-plastic model. The elastic-plastic deformation is continuous deformation. There is no elastic region and plastic region in the P-Q coordinate system. Each stress-strain curve contains all the mechanical information of the material. In conventional triaxial compression experiments, σ 1- σ 3=a1*(arctan(( ε 1- ε 3)*c1)- e/( 2*c1*c1*( σ m+ σ m0)^n1) *LN(((c1*c1*( ε 1- ε 3))^ 2+1)), ε v= ε vm0+a4*(arctan(( σ m+ σ m0 )*c4)-e4*( σ 1- σ 3)^n4 *LN(((c4*( σ m+ σ m0)) ^ 2 + 1), pressure meridian equation ( σ 1- σ 3)max= a1*(arctan(( ( σ m+ σ m0)^n1)*c1*c1/e1)- e1/(2*c1*c1*( σ m+ σ m0)^n1)*LN(((c1*c1*(c1*( σ m+ σ m0) ^ n1 / e1) 2 + 1). The experimental data show that the continuous deformation elastic-plastic model can reflect the stress-strain characteristics of geotechnical materials better.
Keywords: Constitutive equation Strength criterion Continuous deformation model Stress-strain relationship
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
岩土材料应力应变关系及强度准则
评论
全部评论