基于云边协同系统下深度学习的应用
首发时间:2021-10-13
摘要:为解决物联网深度学习模型的网络性能和隐私问题,本研究提出将深度学习算法应用在云边协同系统中,以优化网络性能,保护数据上传中的用户隐私。深度学习的多层结构适用于云边协同系统,边缘节点上传缩减的中间数据,因此减少了从边缘侧设备到云服务器的网络流量。考虑到边缘节点有限的服务能力和网络带宽实时波动的特性,本研究设计了一种云边协同计算环境中计算任务卸载的自适应算法,优化云边协同系统的整体应用性能。实验结果表明,该算法能够在云边协同计算环境中根据不同的网络环境以及服务器性能动态调整计算任务卸载策略,提高云边协同系统的响应速度和鲁棒性。
关键词: 物联网 云边协同系统 深度学习 计算任务卸载自适应算法
For information in English, please click here
Application of deep learning based on cloud edge
Abstract:In order to solve the network performance and privacy problems of the deep learning model of the Internet of things, this study proposes to apply the deep learning algorithm to the cloud side collaborative system to optimize the network performance and protect the user privacy in data upload. The multi-layer structure of deep learning is applicable to the cloud side collaboration system. The edge nodes upload reduced intermediate data, so the network traffic from the edge side devices to the cloud server is reduced. Considering the limited service capacity of edge nodes and the real-time fluctuation of network bandwidth, an adaptive algorithm for computing task unloading in cloud edge collaborative computing environment is designed to optimize the overall application performance of cloud edge collaborative system. Experimental results show that the algorithm can dynamically adjust the computing task unloading strategy according to different network environments and server performance in the cloud side collaborative computing environment, and improve the response speed and robustness of the cloud side collaborative system.
Keywords: Internet of things Cloud edge collaboration system Deep learning Adaptive algorithm for computing task unloading
基金:
引用
No.****
同行评议
勘误表
基于云边协同系统下深度学习的应用
评论
全部评论