基于多特征和优化特征选取的安卓恶意软件检测方法
首发时间:2021-02-04
摘要:随着移动互联网蓬勃发展,手机越来越多的承载着人们的隐私和重要数据,安卓手机受到恶意应用威胁的问题也日趋严重。为了能有效地检测出层出不穷的安卓恶意应用,本文提出了一种高效,便捷的安卓恶意软件检测方法。首先,对于特征类型的选取,在安卓权限和调用的系统API、基于自然语言处理N-gram算法的Dalvik操作码组的基础上,提出加入颗粒度更大,语义更完整的安全漏洞作为特征。其次,针对安卓恶意软件检测为代表的监督分类任务,提出了一种基于传统TF-IDF的优化特征选取算法TIOE,并利用广泛使用的GBDT作为分类模型来对应用进行检测。最后,对两种算法选取的特征进行训练并对比评价。结果表明TIOE所选择的特征在所有指标上的表现均优于传统的TF-IDF。该方法可以更加有效地进行安卓恶意软件检测,也能为其他监督分类场景的特征选择方法提供一种新的思路。
关键词: 计算机应用技术 安卓应用 恶意应用检测 特征工程 机器学习
For information in English, please click here
Android Malware Detection Method Based on Multi-feature and Optimized Feature Selection
Abstract:With the rapid development of mobile Internet, more and more mobile phones are carrying people\'s privacy and important data. The threat of Android mobile phones by malicious applications is becoming more and more serious. In order to effectively detect the endless Android malicious applications, this paper proposes an efficient and convenient Android malware detection method. Firstly, for the selection of feature types, on the basis of Android permissions and system API, Dalvik opcode group based on natural language processing N-gram algorithm, security vulnerabilities with larger granularity and more complete semantics is proposed as feature. Secondly, for Android malware detection as the representative of the supervised classification task, this paper proposes an optimized feature selection algorithm TIOE based on traditional TF-IDF, and uses the widely used GBDT as the classification model to detect applications. Finally, the features selected by the two algorithms are trained and compared. The results show that the selected features of TIOE outperform the traditional TF-IDF in all indicators. This method can detect Android malware more effectively, and also provide a new idea for feature selection methods of other supervised classification scenarios.?????
Keywords: Technology of Computer Application Android application Malicious application detection Feature engineering Machine learning
基金:
引用
No.****
同行评议
勘误表
基于多特征和优化特征选取的安卓恶意软件检测方法
评论
全部评论