基于Dropout方法的回声状态网络的网络流量预测
首发时间:2020-12-18
摘要:本文提出一种基于Dropout方法的回声状态网络模型(Dropout ESN)。该模型避免了经典的回声状态网络所产生的储备池的随机性,降低了储备池内神经元的连接度,优化了储备池结构,解决了网络流量预测过程中容易出现的过拟合问题,同时也提高了网络的预测效率。将基于Dropout方法的回声状态网络应用到实际的网络流量预测任务中,设置了Dropout ESN的储备池内神经元以不同的概率停止工作,将经典的回声状态网络和基于Dropout方法的回声状态网络进行了对比,分析了两种算法对预测性能的影响。
关键词: 神经网络 回声状态网络 网络流量预测 Dropout方法
For information in English, please click here
Network Traffic Prediction of Echo State Network Based on Dropout
Abstract:In this paper,an echo state network model based on dropout method (dropout ESN) is proposed. The model avoids the randomness of the reservoir generated by the classical echo state network, reduces the connectivity of neurons in the reservoir, optimizes the structure of the reservoir, solves the over fitting problem in the process of network traffic prediction, and improves the prediction efficiency of the network. The echo state network based on dropout method is applied to the actual network traffic prediction task. The neurons in the reservoir of dropout ESN are set to stop working with different probability. The classic echo state network and the echo state network based on dropout method are compared, and the influence of the two algorithms on the prediction performance is analyzed.
Keywords: neural network echo state network network traffic prediction dropout
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于Dropout方法的回声状态网络的网络流量预测
评论
全部评论