选择性混淆:一种针对深度学习水印的攻击技术
首发时间:2020-10-22
摘要:深度学习模型在商业场景中得到了广泛的应用,并取得了一定的成果。建立一个生产级别的深度学习模型通常需要花费大量的资源。因此,这类模型应当被当作知识产权,并利用深度学习模型水印技术进行保护。为检验水印算法的安全性,本文提出了一种选择性混淆的攻击方法。该方法利用少量带有错误标签的攻击图像对模型进行再次训练来消除模型中的水印。仿真结果表明,该攻击方法只需对模型进行5轮重训练,即可消除黑盒水印。同时,我们提出了一种使用自动编码器的抗选择性混淆的深度学习水印算法,以保护深度学习模型所有者的合法权益。
关键词: 网络空间安全 深度学习模型水印 错误标签敏感性 选择性混淆 自动编码器
For information in English, please click here
Selective confusion attack: an attacking technique against DNN watermarking
Abstract:Deep learning models are widely used in business scenarios and have achieved some success. It usually needs time or computing consuming to build a production-level deep learning model. As a result, such models require copyright protection by watermarks. To judge the security of watermarks, Selective confusion attacking method is provided. In this method, some attack images with error labels are used in retraining to remove watermark. Simulation results show that our attacking method can break the existing black-box watermarking methods by with only 5 rounds of retraining. At the same time, we propose a watermarking method with autoencoder and it can resist Selective confusion to protect the legitimate rights of deep learning model owners.)
Keywords: cyberspace security deep learning model watermark error label sensitivity selective confusion autoencoder
引用
No.****
动态公开评议
共计0人参与
勘误表
选择性混淆:一种针对深度学习水印的攻击技术
评论
全部评论