您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 202009-68
论文题目 基于改进RFM模型的社交电商细分研究
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

基于改进RFM模型的社交电商细分研究

首发时间:2020-09-24

戴炜 1   

戴炜(19950803-),男,硕导:牛少彰,主要研究方向:大数据与数据挖掘

牛少彰 1   

牛少彰(1963-),男,博导,主要研究方向:网络信息安全、网络攻防技术、信息内容安全、移动通信安全、信息隐藏技术、数字权益管理技术、软件安全以及计算机取证技术等多个方面

  • 1、北京邮电大学计算机学院,北京 100876

摘要:在社交电商高速发展的背景下,社交电商服务平台也随之兴起。本文根据社交电商的交易数据,首次提出建立基于RFM模型改进的RCFM模型对社交电商进行细分。该模型在引入社交电商一定时间内的交易人数属性的基础上,利用层次分析法优化社交电商价值得分的指标权重,最后通过优化的Kmeans聚类算法实现对社交电商的细分。结果表明基于RCFM模型对社交电商的细分能充分体现出社交电商的商业价值,对社交电商服务平台构建社交电商用户画像,实现个性化服务具有积极的实践意义。

关键词: 计算机科学与技术 用户细分 RFM模型 层次分析法 Kmeans

For information in English, please click here

Research on Social E-commerce Segmentation Based on Improved RFM Model

DAI Wei 1   

戴炜(19950803-),男,硕导:牛少彰,主要研究方向:大数据与数据挖掘

NIU Shaozhang 1   

牛少彰(1963-),男,博导,主要研究方向:网络信息安全、网络攻防技术、信息内容安全、移动通信安全、信息隐藏技术、数字权益管理技术、软件安全以及计算机取证技术等多个方面

  • 1、School of Computer, Beijing University of Posts and Telecommunications, Beijing 100089

Abstract:In the context of rapid development of social e-commerce, social e-commerce service platforms have also emerged. Based on the transaction data of social e-commerce, this paper first proposes to establish an improved RCFM model based on RFM model to subdivide social e-commerce. This model introduces the attribute of the number of traders in social e-commerce within a certain period of time, uses the analytic hierarchy process to optimize the index weight of social e-commerce value score, and finally implements the subdivision of social e-commerce through the optimized Kmeans clustering algorithm. The results show that the segmentation of social e-commerce based on the RCFM model can fully reflect the commercial value of social e-commerce, and it has positive practical significance for the construction of social e-commerce user portraits on the social e-commerce service platform and the realization of personalized services.

Keywords: computer science and Technology user segmentation RFM model analytic hierarchy process Kmeans

Click to fold

点击收起

基金:

论文图表:

引用

导出参考文献

.txt .ris .doc
戴炜,牛少彰. 基于改进RFM模型的社交电商细分研究[EB/OL]. 北京:中国科技论文在线 [2020-09-24]. https://www.paper.edu.cn/releasepaper/content/202009-68.

No.****

动态公开评议

共计0人参与

动态评论进行中

评论

全部评论

0/1000

勘误表

基于改进RFM模型的社交电商细分研究