基于SDAE编码器和梯度提升树的网络入侵检测方法
首发时间:2020-05-09
摘要:随着网络应用技术的飞速发展,网络安全隐患与日俱增,大规模的网络攻击事件时常发生,对网络安全技术的发展提出了更高的要求。针对现有网络入侵检测方法在处理高维度的海量非线性数据时存在的检测性能低、误检率高等问题,提出了一种基于栈式去噪自动编码器(Stack Denoising Auto-Encoder,SDAE)和梯度提升树(Gradient Boosting Decision Tree, GBDT)的组合式入侵检测模型(SDAE-GBDT),利用SDAE编码器提取网络流量数据的深层特征,结合GBDT的良好分类性能实现高准确率的入侵检测。
关键词: 计算机技术 网络入侵检测 SDAE编码器; 深度学习; 梯度提升树;集成学习
For information in English, please click here
Network Intrusion Detection Method Based on Stack Denoising Auto-Encoder and Gradient Boosting Decision Tree
Abstract:With the rapid development of network application technology, hidden dangers of network security are increasing day by day, and large-scale network attack events often occur, which put forward higher requirements for the development of network security technology. Aiming at the problems of low detection performance and high false detection rate of existing network intrusion detection methods when processing high-dimensional massive non-linear data, a stack denoising auto-encoder (SDAE) is proposed Combined with Gradient Boosting Decision Tree (GBDT), the combined intrusion detection model (SDAE-GBDT) uses the SDAE encoder to extract the deep features of network traffic data, and combines the good classification performance of GBDT to achieve high accuracy intrusion detection.
Keywords: computer technology network intrusion detection SDAE encoder deep learning gradient boosting decision tree integrated learning
引用
No.****
动态公开评议
共计0人参与
勘误表
基于SDAE编码器和梯度提升树的网络入侵检测方法
评论
全部评论