基于Nao机器人的人体动作模拟系统研究
首发时间:2020-03-13
摘要:构建了一个基于Nao机器人的人体动作模仿系统。首先提出一种改进的机器人三维空间坐标转换算法,用于将三维空间内的坐标数据转换为对应的Nao机器人关节角度。传统的Nao机器人空间坐标转换算法是通过计算两个关节向量夹角的cosθ值来反推θ值,这种方式存在计算误差大,且容易受到外界环境噪声干扰等问题。本文算法以扩展卡尔曼滤波器为基本框架,将空间坐标转换的过程分为测量和估计两个步骤。先是通过逆运动学和牛顿迭代法,根据已知机器人的关节空间坐标,求出机器人各关节角度;然后将求解后得到的关节数据输入扩展卡尔曼滤波器框架中,建立扩展卡尔曼滤波器的测量模型和预测模型,预测的结果即为精确的机器人关节角度数据。通过与传统算法的比较,验证了该空间转换算法的精度和抗干扰性。最后结合Kinect,追踪位于Kinect前方的人体动作,驱动Nao机器人运动,实现对人的动作模仿。
For information in English, please click here
Study on Human Action Imitation System Based on Nao Robot
Abstract:A human action imitation system based on Nao robot is proposed in this paper. Firstly an improved Nao robot three-dimensional coordinate transformation algorithm is designed to convert the coordinate data in three-dimensional space into the corresponding Nao robot joint angle. The traditional Nao robot space coordinate conversion algorithm inversely pushes the θ value by calculating the cosθ value of the angle between the two joint vectors. This method has large calculation errors and is susceptible to external environmental noise interference. Aiming at these problems, this paper proposes an improved spatial transformation algorithm. The algorithm takes the extended Kalman filter as the basic framework and divides the process of spatial coordinate transformation into two steps: measurement and estimation. Firstly, the inverse kinematics and Newton iteration method are used to solve the problem of the joint coordinates of the known robot joints, and then the joint data obtained by the solution is input into the extended Kalman filter framework to establish the extended Kalman filte. The final prediction is the robot joint angle data. Experiements improve the accuracy and anti-interference of our space conversion algorithm comparing to the traditional algorithm. Finally, a Kinect is used to capture the human action data, which is transformed into joint angles for a Nao robot with above improved algorithm.Then the Nao imitate the human action.
Keywords: Nao robot Space coordinate transformation Action imitation
引用
No.****
动态公开评议
共计0人参与
勘误表
基于Nao机器人的人体动作模拟系统研究
评论
全部评论