基于DBN和随机森林算法的入侵检测模型的研究
首发时间:2019-12-26
摘要:针对传统机器学习算法在入侵检测领域表现出计算性能差、分类结果不佳以及泛化性能差等诸多问题,以及目前大规模的网络流量及其复杂性,本文提出一种基于深度置信网络(DBN)来进行特征学习,并使用随机森林这样的集成学习方法来构造分类器的入侵检测模型。针对网络流量复杂性,利用多层受限波尔兹曼机进行特征学习,实现降维的目的;利用随机森林对降维后的数据进行分类识别以提高检测准确率和入侵检测模型的泛化性能。通过KDD99数据集进行实验表明:结合DBN和随机森林的入侵检测模型高效可行,且具有更高的检测精度。
关键词: 入侵检测 深度学习 集成学习 深度置信网络(DBN) 降维 随机森林
For information in English, please click here
Research on Intrusion Detection Model Based on DBN and Random Forest
Abstract:Aiming at the problems of traditional machine learning algorithms in the field of intrusion detection, such as poor computing performance, poor classification results, and poor generalization performance, as well as the current large-scale network traffic and its complexity. this paper proposes a method based on deep belief networks (DBN) To perform feature learning, and use an ensemble learning method such as random forest to construct an intrusion detection model for the classifier. Aiming at the complexity of network traffic, multi-layer restricted Boltzmann machines are used for feature learning to achieve the purpose of dimensionality reduction; random forest is used to classify and identify data after dimensionality reduction to improve detection accuracy and generalization of intrusion detection models. performance. Experiments with the KDD99 dataset show that the intrusion detection model combining DBN and random forest is efficient and feasible, and has higher detection accuracy.
Keywords: Intrusion detection deep learning ensemble learning deep belief network (DBN) dimensionality reduction random forest
基金:
引用
No.****
同行评议
共计0人参与
勘误表
基于DBN和随机森林算法的入侵检测模型的研究
评论
全部评论