一种自动生成XSS攻击向量的方法
首发时间:2019-01-17
摘要:针对XSS漏洞检测工具在攻击向量选取上的不足,本文提出了一种自动生成XSS攻击向量的方法。为了优化攻击向量的生成,本文从三个方面改进攻击向量的生成方法:1. 提出了使用模块化的方式构造攻击向量。使用巴科斯范式定义攻击向量的生成公式,并且定义了输出上下文与攻击向量类型的映射关系,以针对不同输出上下文注入不同类型的攻击向量;2. 总结了目前的变异规则,并将变异规则与攻击向量的组成模块进行对应,以针对特定模块使用对应的变异规则;3. 提取攻击向量特征,使用机器学习分类算法对攻击向量进行分类,以减小攻击向量库的规模。经过实验,该方法可以生成数量少,精准度高的攻击向量库,从而提高XSS漏洞检测效率。
关键词: 信息安全 攻击向量 巴科斯范式 输出上下文 机器学习分类算法
For information in English, please click here
A method for automatically generating XSS attack vectors
Abstract:Aiming at the shortcomings of XSS vulnerability detection tools in selecting attack vectors, this paper proposes a method for automatically generating XSS attack vectors. In order to optimize the generation of attack vectors, this paper improves the generation methods of attack vectors from three aspects: 1. Propose a modular way to constructattack vectors. Use the Backus Normal Form to define the attack vector generation formulas. Define the mapping relationship between the output contexts and the attack vector types. Then inject different types of attack vectors to different output contexts. 2. Summarize the current mutation rules and map the mutation rules to the component modules of the attack vector to use the corresponding mutation rules for specific modules. 3. Extract the attack vectors features and classify the attack vectors using machine learning classification algorithms to reduce the size of the attack vectors library.Through experiments, the method can generate a small number of highly accurate attack vectors library to improve the efficiency of XSS vulnerability detection.
Keywords: information security attack vectors Backus Normal Form reflection context machine learning classification algorithms
基金:
引用
No.****
同行评议
勘误表
一种自动生成XSS攻击向量的方法
评论
全部评论