对流扩散问题的迎风有限体积元方法的后验误差估计
首发时间:2017-02-02
摘要:有限体积法格式构造简单,并且能保持数值流量的局部守恒性。本文主要研究的是对流扩散反应问题基于Crouzeix-Raviart非协调元的迎风有限体积元方法的逼近误差在$H^{1}$ 范数意义下的后验误差估计,主要参考对流扩散反应方程基于协调元的具有迎风格式和基于非协调元的不具迎风格式的有限体积元方法的后验误差估计的方法,运用迎风格式处理对流项,最后得到了逼近误差在$H^{1}$范数意义下的后验误差估计整体上界。
关键词: 对流扩散反应方程; 有限体积元方法;Crouzeix-Raviart 非协调元; 后验误差估计
For information in English, please click here
A posteriori error estimate of nonconforming finitevolume elements for convection-diffusion-reaction problem
Abstract:The finite volume element structure is simple, and keep the local conservativeness of the numerical flow.The Finite Field method is a direct discrete numerical method in the conservation equation of integral form in physical space. The main purpose of thispaper is to give a posteriori $H^{1}$ error estimates forCrouzeix-Raviart nonconforming finite volume element method withupwind scheme for convection-diffusion-reaction problem.The main reference is the calculation method of the upwind scheme based on the conforming finite element and the scheme without upwind based on Crouzeix-Raviart nonconforming finite volume element.Use the upwind scheme to treat the convection term.Finally, weget the upper bound of the posteriori error estimator.
Keywords: finite volume method Crouzeix-Raviart element convection-diffusion-reaction equations aposteriori error estimates
论文图表:
引用
No.4717614118018414****
同行评议
共计0人参与
勘误表
对流扩散问题的迎风有限体积元方法的后验误差估计
评论
全部评论