非线性分数阶微分方程解的存在唯一性
首发时间:2016-12-15
摘要:我们在Banach空间$C([0, T]) $ 中证明了下述非线性分数阶微分方程解的存在唯一性:egin{equation} egin{array}{lll} left {egin{array}{lll}D^{ lpha} u (t) = f (t, D^{ eta_{i}} u(t), 0leq ileqm), hspace{0.3cm} t in (0, T ),xin mathbf{R}, \ left . rac{d ^{k} u(t)}{d t ^k} ight |_{t=0} =eta_k hspace{0.3cm} (0leq k leq {lpha }-1),end{array} ight . end{array} end{equation} 此处 $ lpha > eta _i>eta_0= 0, 1leq ileqm, { lpha }$ 为不小于 $lpha$的最小整数,$f (t, v_i(t), 0leq ileq m)in C([0, T ) imes C([0, T )) imes C([0, T )) imescdots imes C([0, T ))), $$$| f ( t, u_i(t), 0leq ileq m)- f ( t, v_i(t),0leq ileq m)|leq sumlimits_{i=0}^m |a_i(t) (u_i(t)-v_i(t))| $$此处 $a_iin C([0, T )),max limits_{tin [0,T]} max limits_{0leq i,jleq m}int_0^t|a_i(s)|(t-s)^{lpha-eta_j-1} ds <+infty ( 0leq ileq m), t in[0, T ] $.
关键词: 微分方程,分数阶,存在唯一性定理, Laplace 变换
For information in English, please click here
Existence-uniqueness of nonlinear fractional differential equation
Abstract:We prove the existence-uniqueness of the solution to the nonlinearfractional differential equation in the Banach space $C([0, T]),$$$ egin{array}{lll} left {egin{array}{lll}D^{ lpha} u (t) = f (t, D^{ eta_{i}} u(t), 0leq ileqm), hspace{0.3cm} t in (0, T ),xin mathbf{R}, \ left . rac{d ^{k} u(t)}{d t ^k} ight |_{t=0} =eta_k hspace{0.3cm} (0leq k leq {lpha }-1),end{array} ight . end{array} $$ where $ lpha > eta _i>eta_0= 0, 1leq ileqm, { lpha }$ is the minimum integer no less than $lpha,f (t, v_i(t), 0leq ileq m)in C([0, T ) imes C([0, T )) imes C([0, T )) imescdots imes C([0, T ))), $$$| f ( t, u_i(t), 0leq ileq m)- f ( t, v_i(t),0leq ileq m)|leq sumlimits_{i=0}^m |a_i(t) (u_i(t)-v_i(t))| $$where $a_iin C([0, T )),max limits_{tin [0,T]} max limits_{0leq i,jleq m}int_0^t|a_i(s)|(t-s)^{lpha-eta_j-1} ds <+infty ( 0leq ileq m) $ and $ t in[0, T ] $.
Keywords: Differential equation, Fractional order, Existence-uniqueness theorem, Laplace transform
基金:
论文图表:
引用
No.4713085117425814****
同行评议
共计0人参与
勘误表
非线性分数阶微分方程解的存在唯一性
评论
全部评论