Application of PID Controller based on Improved BPNN in the Magnetic Inertial Measurement System
首发时间:2015-01-14
Abstract:To adapt slow time variation of the hardware parameters and nonlinearities in Magnetic Inertial Measurement System (MIMS), the improved Back Propagation Neural Network (BPNN) algorithm is effectively integrated to the traditional PID controller. BPNN has the ability to represent any nonlinear functions, which can achieve the best combination of PID three coefficients in real time online learning. Using BPNN can help to build the coefficient self-learning PID controller in MIMS. The simulation which was established in MATLAB indicates that the improved BPNN PID controller can improve the robustness of system and has high accuracy control. At last, experiments in MIMS convincingly verified the simulation.
keywords: Magnetic Inertial Measurement System Improved BPNN PID controller
点击查看论文中文信息
基于改进型BP神经网络的PID控制器在惯性测量系统中的应用
摘要:为了适应惯性测量系统硬件参数的慢时变性以及系统的非线性,在传统PID控制理论的基础上有机的集成了改进型的BP神经网络算法。BP神经网络算法能够逼近任意的非线性函数,通过BP神经网络算法的线上学习,PID控制器的三、个参数kp、ki以及kd能够达到一个最好性能的组合。在惯性测量系统中,利用BP神经网络算法能够协助传统PID控制器参数的有效整定。本文在MATLAB环境下搭建了仿真实验,仿真结果证明了改进型BP神经网络算法能够提高系统的鲁棒性。最后在真实惯性测量系统中做的测试验证了仿真结论的正确性。
基金:
论文图表:
引用
No.4627112102870414****
同行评议
共计0人参与
勘误表
基于改进型BP神经网络的PID控制器在惯性测量系统中的应用
评论
全部评论