Equivalence test via non-zero rate difference in matched-pair studies with incomplete data
首发时间:2014-12-23
Abstract:Under the assumption of missing at random, four statistics and two test procedures including the approximate unconditional and Bootstrap-resampling procedures are proposed to test the equivalence of two correlated proportions in an incomplete matched-pair design. A computationally feasible EM algorithm is presented to evaluate the unconstrained/constrained maximum likelihood estimations of parameters. Extensive simulation studies show that the approximate unconditional and Bootstrap-resampling methods behave satisfactorily in terms ofthe type I error rates, and the approximate unconditional score test procedure is highly recommended because its type I error rate is well controlled and its computational burden is not heavy. An example is used to illustrate the proposed procedures.
keywords: Approximate unconditional test Bootstrap-resamping test Equivalence Matched-pair design Missing data
点击查看论文中文信息
不完全配对实验数据的有关非零风险度差的等价性检验
摘要:在MAR缺失数据机制下,基于近似非条件方法和Bootstrap重抽样方法对不完全配对实验数据提出了检验两个比值等价性的新方法。EM算法被用来求参数的约束或无约束极大似然估计。大量的模拟研究表明:近似非条件方法和Bootstrap重抽样方法是很好的效果,根据计算时间近似非条件方法是一个理想的方法。一个实例用来说明方法的应用。
关键词: 缺失数据 近似非条件检验 Bootstrap重抽样检验 等价性 配对设计
基金:
论文图表:
引用
No.4624019515612141****
同行评议
共计0人参与
勘误表
不完全配对实验数据的有关非零风险度差的等价性检验
评论
全部评论