基于关联关系与启发式搜索的特征选择在银行设备故障定位中的应用
首发时间:2014-12-31
摘要:为了在银行设备故障定位时降低特征向量的维度,提高机器学习模型分类预测的准确率与时间性能。本文提出了一种基于关联关系与启发式搜索进行组合的特征选择方法,在该方法中,特征子集通过由顺序前向搜索、顺序后向搜索结合的双向搜索算法进行搜索产生,然后通过计算属性之间的关联关系并剔除冗余属性,选择最优的特征子集,最后基于该特征子集进行朴素贝叶斯分类器的学习。通过weka平台,利用UCI机器学习数据库以及银行设备实测数据对该特征选择方法进行试验,结果表明,该算法可以有效的降低维度,提高分类准确率并且提高时间性能,在实际的银行设备故障定位中具有实用意义。
For information in English, please click here
The Application of Feature Selection in Bank Devices Fault Location Based on Correlation Coefficient and Heuristic Search
Abstract:In order to reduce the dimension of the feature vector in the bank equipment fault location and improve the classification accuracy and time performance of the prediction model, this paper proposed a feature selection method based on the combination of correlation coefficient and heuristic search. In this method, the feature subset is searched through bidirectional search binding the Sequential Forward Search and Sequential Backward Search. Then the redundant features will be removed by computing the correlation coefficient . At last, the optimal feature subset is selected. The na?ve Bayesian Classifier is trained based the selected feature subset. Tests were did for the selection methods based on the Weka platform and UCI data mining databases. The results showed that the feature selection method proposed did good on dimension reduction and improvements on classification accuracy and time performance. It has practical significance in the actual bank devices fault position.
Keywords: Correlation Coefficient Heuristic Search Feature Selection Fault location
基金:
论文图表:
引用
No.4624747102694914****
同行评议
共计0人参与
勘误表
基于关联关系与启发式搜索的特征选择在银行设备故障定位中的应用
评论
全部评论