基于BP神经网络的web服务选择算法
首发时间:2014-01-02
摘要:良好的web服务选择算法可以为用户选取最合适的服务,然而传统的误差反向传播神经网络算法具有收敛速度缓慢以及学习过程中容易出现振荡等问题,不能用于实际的服务选择场景中.本文提出了一个新颖的误差反向传播算法,并且能在每次迭代中自适应调整学习因子.仿真结果表明,新颖的算法在训练速度方面得到了优化,并减缓了学习过程中的振荡,在web服务的选取上,优化效果明显.
关键词: 误差反向传播算法 web服务选择 平缓因子 UPS
For information in English, please click here
BP Neural Network-Based Web Service Selection Algorithm
Abstract:A good web selection algorithm can select the most suitable service for users. However,the traditional error back propagation neural network algorithm converges slowly and prone to oscillations during the learning process,which can not be used in the actual scene.This paper presents a novel error back propagation algorithm,and the learning factor is adaptive in every iteration.The simulation results show that the training speed get optimized,the algorithm slows the oscillations of the learning process.The optimize effect is obvious on the web services select.
Keywords: error back propagation algorithm web services selection gentle factor UPS
基金:
论文图表:
引用
No.****
同行评议
共计0人参与
勘误表
基于BP神经网络的web服务选择算法
评论
全部评论