基于小波熵的视觉疲劳检测方法研究
首发时间:2013-03-08
摘要:针对脑机接口实验中视觉疲劳难以检测的缺点,本文提出一种基于小波熵的定量疲劳检测算法。首先结合脑电节律特性,利用小波包分解提取对疲劳状态变化敏感α节律波,然后引进了多尺度下的小波熵对α节律波进行分析,从而定量检测视觉疲劳。受试者实验后脑电信号的小波熵明显下降,实验分析结果表明在一定的视觉疲劳状态下,α波的小波熵对疲劳状态的变化更加敏感,结果差异更加显著。此结果说明α波的小波熵可以反映出脑电信号的复杂度,对人体疲劳状态的变化敏感,计算简单,因此有望成为疲劳检测中一种重要的指标。
For information in English, please click here
Research on visual fatigue detection based using wavelet entropy
Abstract:It is rather difficult to detect visual fatigue in Brain Computer Interface (BCI) experiments. In this paper, we proposed a quantitative fatigue detection algorithm based on wavelet entropy. Firstly, combining the features of electroencephalogram (EEG) rhythm, wavelet package decomposition was used to extract αrhythm which is sensitive to fatigue. Then, wavelet entropy with multi-scale is employed to analyze αrhythm to quantitatively detect visual fatigue. Results show that after BCI experiments, the wavelet entropy of subject's EEG decreased dramatically. This indicates that wavelet entropy of αrhythm can reflect the complextiy of EEG and is very sensitive to human being's fatigue. Furthermore, the computational load of wavelet entropy is fairly low and it is a promising indicator in fatigue detection.
Keywords: Brain Computer Interface Visual fatigue Wavelet package decomposition Wavelet entropy
基金:
论文图表:
引用
No.****
同行评议
共计0人参与
勘误表
基于小波熵的视觉疲劳检测方法研究
评论
全部评论