

Ind. Eng. Chem. Res., 35 (10), 3560 -3566, 1996. ie9506633 S0888-5885(95)00663-4

Copyright © 1996 American Chemical Society

Optimal Design of Multiproduct Batch Chemical Process
Using Genetic Algorithms

Chunfeng Wang, Hongyin Quan, and Xien Xu*

Chemical Engineering Department, Tianjin University, Tianjin 300072, People's
Republic of China

Received for review November 3, 1995

Revised manuscript received June 14, 1996

Accepted June 14, 1996

Abstract:

For the first time, genetic algorithms (GAs) are applied to the optimal design of
the multiproduct batch chemical process (MBCP) successfully. An effective
multiparameter crossed binary coding method is developed. The GAs have the
advantages of no special demand for initial values of decision variables, lower
computer storage, and less CPU time for computation. Better results are obtained
in comparison with the results of mathematical programming (MP) and simulated
annealing (SA). The effectiveness of GAs in solving the complex design problem of
batch chemical process is demonstrated.

Introduction

Batch processes are widely used in the chemical process industry and are of
increasing industrial importance due to a great emphasis on low-volume, high-
value-added chemicals and the need for flexibility in a market-driven
environment. In the optimal design of a multiproduct batch chemical process
(MBCP), the production requirement of each product and the total production time
available for all products are specified. The number and size of parallel
equipment units in each stage as well as the location and size of intermediate
storage are to be determined in order to minimize the investment.

The common approach used by previous research in solving the design problem of
batch plant has been to formulate it as an MINLP problem and then employ
optimization techniques to solve it. Mathematical programming (MP) (Grossmann and
Sargent, 1979; Knopf et al., 1982; Takamatsu et al., 1982), and heuristics (Yeh
et al., 1987; Modi and Karimi, 1989; Xu et al., 1993) are commonly used. Because
of the NP-hard nature of the design problem of batch plant, unbearable long

转载

http://www.paper.edu.cn

computational time will be induced by the use of MP when the design problem is
somewhat complicated. Severe initial values for the optimization variables are
also necessary. Moreover, with the increasing size of the design problem, MP will
be futile. Heuristics needs less computational time, and severe initial values
for optimization variables are not necessary, but it may end up with a local
optimum due to its greedy nature. Also, it is not a general method with respect
to the fact that special heuristic rules will be needed for a special problem.
Patel et al. (1991) and Tricoire and Malone (1991) applied simulated annealing
(SA) to solve the design of MBCP. SA performs effectively and gives a solution
within 0.5% of the global optimum. However, SA has the disadvantage of long
searching time and so needs more CPU time than heuristics. In order to speed up
the convergence of SA, Wang et al. (1994) combined SA with heuristics to solve
the design problem of MBCP, and satisfactory results were obtained.

To solve the proposed problem more effectively, we apply GAs, an intelligent
problem-solving method that has demonstrated its effectiveness in solving
combinatorial optimization problem and the "combinatorial explosion" associate
with it in many areas to achieve this goal. Some modifications to traditional
GAs, mainly an effective multiparameter crossed binary coding method, is
developed, and satisfactory results are obtained.

The rest of this paper is organized as follows. Section 2 presents the
mathematical model of MBCP. Section 3 gives a detailed account of the genetic
algorithms as well as the way of implementation. To demonstrate the effectiveness
of GAs in solving the proposed problem, section 4 presents two problems adopted
from Patel et al. (1991) and their computation results using GAs. Comparisons
with MP and SA are also given. Finally, section 5 presents the summary and
conclusions.

Mathematical Model of MBCP

The optimal design for multiproduct batch processes can all be induced to a MINLP
model. This paper employs Modi's model modified by Xu et al. (1993). It has the
following assumptions:

(1) The processes operate in the way of overlay;

(2) The devices in the same production line cannot be reused by the same product;

(3) The long campaign and the single product campaign are considered;

(4) The type and size of parallel items in- or out-of-phase are the same in one
batch stage;

(5) All intermediate tanks are finite ones;

(6) The operation between stages can be of zero wait or no intermediate tank when
there is no storage;

(7) There is no limitation for utility;

(8) The cleaning time of the batch item can be neglected or included in
processing time;

中国科技论文在线 http://www.paper.edu.cn

(9) The size of the devices can change continuously in its own range.

Assuming that there are J batch stages, K semicotinuous stages, and I products to
be manufactured; that there are moj out-of-phase groups of parallel units in each

batch stage in which there are mpj in-phase parallel units of which the sizes are

all Vj; that there are Rk parallel units in-phase in each semicontinuous stage,

the operating rates of which are all Rk; that there are S - 1 intermediate tanks

that divide the whole process into S subsystems; and that let

and using the equipment investment as a criterion of optimization, which is
expressed as a power function of characteristic dimension of equipment, the
following mathematical model could be obtained:

subject to the following:

(1) Dimension constraints: every equipment alters in its allowable range:

(2) Time constraints: the summation of available production time for all products
is not more than net total time for production:

where all the following are true: (a) the productivity for product i:

(b) the limiting cycle time for product i in subprocess s:

(c) the cycling time for product i in batch stage j:

(d) the processing time for product i in batch stage j:

(e) the operating time for product i in substrain t:

中国科技论文在线 http://www.paper.edu.cn

(f) the batch size for product i in subprocess s:

(3) The constraints of product quantity: the same product in different subprocess
posses the same productivity.

(4) The dimension of intermediate storage is the maximum value of what is needed
by all products:

Using the mathematical model to optimize a design for a given product demand, the
size and number for each kind of equipment must be calculated to minimize the
equipment investment.

Genetic Algorithms

Genetic Algorithms. Genetic algorithms (GAs), proposed by Holland (1975) and his
colleagues, are search algorithms based on the mechanics of natural selection and
natural genetics. They combine the survival of the fittest among string
structures with a structured yet randomized information exchange to form search
algorithms with some of the innovative flair of human search. In every
generation, a new set of artificial creation (strings) is created using bits and
pieces of the fittest of the old; an occasional new point is tried for good
measure. While randomized, GAs are no simple random walk. They efficiently
exploit historical information to speculate on new search points with expected
improved performance.

The canonical steps of the GAs can be described as follows:

(1) The problem to be addressed is defined and captured in an objective function
that indicated the fitness of any potential solution.

(2) A population of candidate solutions is initialized subject to certain
constraints. Typically, each trial solution is coded as a vector x, termed a
chromosome, with elements being described as solutions represented by binary
strings. The desired degree of precision would indicate the appropriate length of
the binary coding.

(3) Each chromosome, xi, i = 1, ..., P, in the population is decoded into a form

appropriate for evaluation and is then assigned a fitness score, (xi) according

to the objective.

(4) Selection in genetic algorithms is often accomplished via differential
reproduction according to fitness. In a typical approach, each chromosome is
assigned a probability of reproduction, pi, i = 1, ..., P, so that its likelihood

of being selected is proportional to its fitness relative to the other
chromosomes in the population. If the fitness of each chromosome is a strictly
positive number to be maximized, this is often accomplished using roulette wheel
selection (Goldberg, 1989). Successive trials are conducted in which a chromosome
is selected, until all available positions are filled. Those chromosomes with
above-average fitness will tend to generate more copies than those with below-

中国科技论文在线 http://www.paper.edu.cn

average fitness.

(5) According to the assigned probabilities of reproduction, pi, i = 1, ..., P, a

new population of chromosomes is generated by probabilistically selecting strings
from the current population. The selected chromosomes generate "offspring" via
the use of specific genetic operators, such as crossover and bit mutation.
Crossover is applied to two chromosomes (parents) and creates two new chromosomes
(offspring) by selecting a random position along the coding and splicing the
section that appears before the selected position in the first string with the
section that appears after the selected position in the second string and vice
versa (see Figure 1). Bit mutation simply offers the chance to flip each bit in
the coding of a new solution.

(6) The process is halted if a suitable solution has been found or if the
available computing time has expired; otherwise, the process proceeds to step 3
where the new chromosomes are scored, and the cycle is repeated.

Implementation and Empirical Tuning Methods. (1) Mapping Objective Functions to
Fitness Form. In many problems, the objective is more naturally stated as the
minimization of some cost function g(x) rather than the maximization of some
utility or profit function u(x). Even if the problem is naturally stated in
maximization form, this alone does not guarantee that the utility function will
be nonnegative for all x as we require in fitness function (a fitness function
must be a nonnegative figure of merit; Goldberg, 1989). As a result, it is often
necessary to map the underlying natural objective function to a fitness function
form through one or more mappings.

The duality of cost minimization and profit maximization is well known. In normal
operations research work, to transform a minimization problem to a maximization
problem we simply multiply the cost function by a minus one. In genetic algorithm
work, this operation alone is insufficient because the measure thus obtained is
not guaranteed to be nonnegative in all instances. With GAs, the following cost-
to-fitness transformation is commonly used:

Cmax may be taken as the largest g value observed thus far. For the problem of

optimal design of MBCP in this paper, we take this transformation form.

(2) Fitness Scaling. In order to achieve the best results of GAs, it is necessary
to regulate the level of competition among members of the population. This is
precisely what we do when we perform fitness scaling.

Regulation of the number of copies is especially important in small population
genetic algorithms. At the start of GA runs, it is common to have a few
extraordinary individuals in a population of mediocre colleagues. If left to the

Figure 1 One-point crossover operator.

中国科技论文在线 http://www.paper.edu.cn

normal selection rule (pselecti = fi/ f), the extraordinary individuals would

take over a significant proportion of the finite population in a single
generation, and this is undesirable, a leading cause of premature convergence.
Later on during a run, we have a very different problem. Late in a run, there may
still be significant diversity within the population; however, the population
average fitness may be close to the population best fitness. If this situation is
left alone, average members and best members get nearly the same number of copies
in future generations, and the survival of the fittest necessary for improvement
becomes a random walk among the mediocre. In both cases, at the beginning of the
run and as the run matures, fitness scaling can help.

There are several methods of fitness scaling, i.e., ranking method (Baker, 1985),
and linear scaling (Goldberg, 1989). We tried both of them and find that the
linear scaling is simple and efficient to our problem.

Let us define the raw fitness f and the scaled fitness f'. Linear scaling
requires a linear relationship between f' and f as the following: f' = af + b. It
is required that f'av = fav and f'max = Cfav in which C is the number of expected

copies desired for the best population member. In the problem, we tried different
values of C ranging from 1.1 to 2.5. To our experiences, C ranging from 1.2 to 2
has been used successfully. The best results were obtained with C = 1.3 for
example 1 and C = 1.5 for example 2.

From the equation above, we can give

In this way, simple scaling helps prevent the early domination of extraordinary
individuals, while later on it encourages a healthy competition among near
equals. It improve the performance of GAs in practice.

(3) Constraints. We deal with the dimension constraints by coding as eq 4 and
deal with time constraints this way: a genetic algorithm generates a sequence of
parameters to be tested using the system model, objective function, and the
constraints. We simply run the model, evaluate the objective function, and check
to see if any constraints are violated. If not, the parameter set is assigned the
fitness value corresponding to the objective function evaluation. If constraints
are violated, the solution is infeasible and thus has no fitness.

(4) Codings. When GAs manage a practical problem, the parameters of the problem
are always coded into bit strings. In fact, coding designs for a special problem
is the key to using GAs effectively. There are two basic principles for designing
a GAs coding (Goldberg, 1989): (1) The user should select a coding so that short,
low-order schemata are relevant to the underlying problem and relatively
unrelated to schemata over other fixed positions. (2) The user should select the
smallest alphabet that permits a natural expression of the problem.

Based on the characteristic and structure of MBCP, instead of choosing the
concatenated, multiparamerted, mapped, fixed-point coding, a multiparameter
crossed binary coding is designed according to the two principles above. The

中国科技论文在线 http://www.paper.edu.cn

coding method of a MCBC is as follows: following the order-the numbers of out-of-
phase groups in each bath stages, in-phase parallel units in each of the groups,
semicontinuous parallel units in each semicontinuous stages, the size of batch
stages, semicontinuous stages, each parameter is encoded independently in usual
binary codings (local strings). Then we place the highest bit of each local
string at the site from 1st to nth in MCBC chromosome and place the second
highest bit of each local string at the site from (n + 1)th to 2nth, and so on.
Then we can obtain a MCBC chromosome (Figure 2).

The reason for using crossed coding can be analyzed in theory as follows: (1)
Because of the strong relationship among the parameters, the highest bit in each
local string in binary codings determines the basic structure (relation) among
every parameter, and the second highest bit in each local string determines finer
structure among every parameter, and so on for the third, the forth, etc. (2) The
schema defining length under crossed coding (n) is shorter than the length under
concatenated, mapped, fixed-point coding (nL - L + 1). According to the schema
theorem: short schemata cannot be disturbed with high frequency, the schema under
crossed coding has a greater chance to be reproduced in the next generation. Due
to its combining the characteristics of function optimization with schema theorem
and successful binary alphabet table, crossed coding demonstrates greater
effectiveness than the ordinary coding method in our implementation.

Local string formation is achieved this way: for a parameter x [xmin, xmax] that

needs to be coded, transform it to a binary coding X [0, 2L] first (appropriate
length L is determined by the desired degree of precision) and then map it to the
specified interval [xmin, xmax]. In this way, the precision of this mapped coding

may be calculated as = (xmax - xmin)/(2
L - 1). In fact, this means that the

interval from xmin to xmax is divided into 2
L- 1 parts (because the biggest binary

string that has a length of L equals the decimal number 20 + 21 + 22 + ... + 2L-1

= 2L - 1). Then, we can obtain x = xmin + X, and a local string for parameter x

with a length of L is obtained.

To illustrate the coding scheme more clearly, we also want to give a simple
example. For the minimization problem: min z = f(x,y) in which x [100,500] and
y [500,1000], if we adopt a string length of 5 for each local string and X:
10110, Y: 01101 is an initial solution, we will get the chromosome 1 0 0 1 1 1 0
0 0 1 (Figure 3) and obtain

Figure 2 Multiparameter crossed binary codings.

Figure 3 Multiparameter crossed binary codings.

中国科技论文在线 http://www.paper.edu.cn

(5) Reproduction. The reproduction operator may be implemented in algorithmic
form in a number of ways. In this paper, we take the easiest method- Roulette
wheel (Goldberg, 1989).

(6) Crossover. Crossover operator can take various forms, i.e., one-point
crossover, multi-point crossover (Frantz, 1972). It is commonly believed that
multi-point crossover has better performance. The number of crossover points in a
multi-points crossover operator is determined by the string structure. In this
paper, a two-point crossover operator is adopted, and the crossover length is no
more than one-third of the total string length. The crossover rate plays a key
role in GA implementation. Different values for crossover rate ranging from 0.4
to 1.0 were tried, and the results demonstrate that the values ranging from 0.6
to 0.95 are successful for examples 1 and 2, while 0.62 and 0.64 are the best
choices for examples 1 and 2, respectively.

(7) Mutation. The mutation rate is also an important factor in GA implementation.
We tried different values varying from 0.001 to 0.2. Small mutation rates prevent
new solution spaces from being explored, while large mutation rate results in the
search process being at random. According to our experiences, the values ranging
from 0.001 to 0.1 are found to be successful for a problem as complicated as
examples 1 and 2. The best results were obtained when we adopted a mutation rate
of 0.001.

(8) Population-Related Factors. (a) Population Size. The GA performance is
influenced heavily by population size. Various values ranging from 20 to 200
population size were tested. Small populations run the risk of seriously
undercovering the solution space, which results in local optimum, while large
populations incur severe computational penalties. According to our experience, a
population size range from 50 to 150 is enough for a problem as complicated as
examples 1 and 2 in this paper. The size of 100 for example 1 and 150 for example
2 were found to be appropriate.

(b) Initial Population. It is demonstrated that a high-quality initial value
obtained from another heuristic technique can help GA find better solutions
rather more quickly than it can from a random start. However, there is possible
disadvantage in that the chance of premature convergence may be increased. In
this paper, the initial population is simply chosen by random.

(9) Termination Criteria. It should be pointed out that there are no general
termination criteria for GA. Several heuristic criteria are employed in GA, i.e.,
computing time (number of generations), no improvement for search process, or
comparing the fitness of the best-so-far solution with average fitness of all the
solutions. All types of termination criteria above were tried; the criteria of
computing time is proven to be simple and efficient in our problem. In our
experience, 5-15 generations simulation is enough for a problem as complicated as
examples 1 and 2 in this paper. The best results were obtained when the number of
generations were taken as 10 for example 1 and 15 for example 2.

Examples and Analysis

Two examples (Patel et al., 1991) are given here to demonstrate the effectiveness
of GAs. The data for examples 1 and 2 are presented in Tables 1 and 2,
respectively. The results are presented in Tables 3 and 4. From these results, we

中国科技论文在线 http://www.paper.edu.cn

can see that better results are obtained in comparison with MP and SA. In
addition, GAs result in a faster convergence. Patel et al. (1991) pointed out
that, due to its complicity, example 2 cannot be solved using any existing method
other than SA. However, GAs deal with it successfully, and the computing time is
less than that of SA. This demonstrates the effectiveness of GAs in solving the
complicated design problem of MBCP, which is due to GAs searching from population
(not a single point) and its parallel computing nature. In fact, the structure of
GA algorithms is well fit for and makes it very convenient to apply to the
optimal design problem of MBCP.

Now, several words about some important aspects in our implication of GAs and
some problems in practice. The most important of all is the method of coding.
Because of the characteristics and inner structure of the design problem of MBCP,
the commonly adopted concatenated, multiparamerted, mapped, fixed-point coding is
not effective in searching for the global optimum. And it is also the inner
structure of the design problem of MBCP that gives us some clues for designing
the above multiparamerter crossed binary coding method. As is evident from the
results of application, this coding method is well fit for the proposed problem.

Another aspect that affects the effectiveness of a genetic procedure considerably
is crossover. Corresponding to the proposed coding method, we adopted a two-point
crossover method. It is commonly believed that multi-point crossover is more
effective than the traditional one-point crossover method. However, we find that
it is not the case that the more points to crossover, the better. It is also
important to note that the selection of crossover points as well as the way to
carry out the crossover should take in account the bit-string structure, as is
the case in our implication.

Despite the demonstrated advantages of GAs algorithms, the feeling persists that
there is much to learn about effectively implementing a genetic algorithm. One
problem in practice is the premature loss of diversity in the population, which
results in premature convergence. Because premature convergence is so often the
case in the implementation of GAs according to our calculation experience,
something has to be done to prevent it. As stated above, fitness scaling is
exactly what we do to achieve this goal. Our experience makes it clear that
fitness scaling can solve the premature problem effectively and conveniently,
although there might be some other methods that are applicable to this problem.

At first glance, it would seem that premature convergence is best treated by an
increase in the mutation rate. As De Jong (1975) pointed out, however, higher
mutation rates will disrupt the proliferation of high-performance schemata as
well as poor ones. Our experience validated this.

Conclusions

For the first time, GAs are applied to the optimal design problem of MBCP.
Satisfactory results are obtained. An effective multiparameter crossed binary
coding method is developed. GAs are well fit for the proposed optimization
problem and demonstrate the following advantages in application:

(1) GAs have no special demand for initial values of decision variables. The
initial population of strings is chosen randomly as long as it does not violate
the constraints for the problem.

中国科技论文在线 http://www.paper.edu.cn

(2) As is evident from the computation results, GAs yield highly satisfactory
global optimum.

(3) Due to the parallel computing nature, GAs result in faster convergence in
comparison with MP and SA.

(4) GAs are simple in structure and are convenient for implementation, with no
more complicated mathematical calculation than such simple operators as encoding,
decoding, testing constraints, and computing values of objective.

aj = cost coefficient for bath stage j

bk = cost coefficient for semicontinuous stage k

Bis = bath size for product i in subprocess s, kg

cs = cost coefficient for intermediate storage

Dik = duty factor for semicontinous stage k for product i

dij = power coefficient for processing time on stage j for product i

gij = coefficient for processing time on stage j for product i

H = horizon, h

Hi = production time of product i, h

i = index for product

I = total number of products

j = index for bath stage

J = total number of bath stages

k = index for semicontinous stage

K = total number of semicontinous stages

moj = number of out-of-phase groups in bath stage j

mpj = number of in-phase parallel units in each of the out-of-phase groups in

bath stage j

nk = number of parallel unites in semicontinous stage k

Pi = productivity of product i, kg/h

中国科技论文在线 http://www.paper.edu.cn

pij = processing time for product i in stage j, h

pij
0 = constant in processing time equation for product i in stage j

Qi = demand for product i, kg

Rk = processing rate for semicontinous unit k, L/h

Rk
max = maximum feasible size of semicontinuous stage k

Rk
min = minimum feasible size of semicontinuous stage k

S = total number of subprocesses

Sij = size factor for bath stage j for product i

S*is = size factor for storage s for product I

t = index for substrain

T = number of substrains

tij = recycling time for product i in bath stage j

tLis = limiting cycle time of product i in subprocess s

Vj = size of bath stage j, L

Vj
max = maximum feasible size of bath stage j, L

Vj
min = minimum feasible size of bath stage j, L

V*s = size of intermediate storage s, L

j = cost coefficient for bath stage j

k = cost coefficient for semicontinous stage k

s = cost coefficient for storage s

it = operating time of substrain t for product i

* E-mail: xexu tju.edu.cn.

 Abstract published in Advance ACS Abstracts, September 1, 1996.

中国科技论文在线 http://www.paper.edu.cn

Baker, J. E. Adaptive selection methods for genetic algorithms. In Proceedings of
an International Conference on Genetic Algorithms and Their Application;
Grefenstette, J. J., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, 1985; p
101.

De Jong, K. A. An analysis of the behavior of a class of genetic adaptive
systems. Diss. Abstr. Int. B 1975, 36 (10), 5140.

Frantz, D. R. Non-linearities in genetic adaptive search. Diss. Abstr. Int. B
1972, 33 (11), 5240.

Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning;
Addison-Wesley Publishing Company Inc.: Reading, MA, 1989.

Grossmann, I. E.; Sargent, W. E. Optimal design of multipurpose chemical plants.

Ind. Eng. Chem. Process Des. Dev. 1979, 18, 343.[ChemPort]

Holland, J. H. Adaptation in Natural and Artificial Systems; University of
Michigan Press: Ann Arbor, MI, 1975.

Knopf, F. C.; Okos, M. R.; Reklaitis, G. V. Optimum design of
batch/semicontinuous processes. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 79.

[ChemPort]

Modi, A. K.; Karimi, I. A. Design of multiproduct bath processes with finite

intermediate storage. Comput. Chem. Eng. 1989, 13, 127.[ChemPort]

Patel, A. N.; Mah, R. S. H.; Karimi, I. A. Preliminary design of multiproduct
non-continuous plants using simulating annealing. Comput. Chem. Eng. 1991, 15,

451.[ChemPort]

Schrandolph, N. N.; Belew, R. K. Dynamic Parameter Encoding for Genetic
Algorithms. Mach. Learn. 1992, 9, 9.

Takamatsu, T.; Hashimoto, I.; Hasebe, S. Optimal design and operation of a bath
process with intermediate storage tanks. Ind. Eng. Chem. Process Des. Dev. 1982,

21, 431.[ChemPort]

Tricoire, B.; Malone, M. A new approach for the design of multiproduct bath
processes. Presented at the AIChE Annual Meeting, Los Angeles, 1991.

Wang, C.; Quan, H.; Xu, X. Optimal design of multiproduct bath chemical process-
mixed simulated annealing. J. Chem. Eng. 1996, 41, 184 (in Chinese).

Xu, X.; Zheng, G.; Cheng, S. Optimized design of multiproduct bath chemical
process-a heuristic approach. J. Chem. Eng. 1993, 44, 442 (in Chinese).

Yeh, N. C.; Reklaitis, G. V. Synthesis and sizing of batch/semi-continuous

processes: single product plants. Comput. Chem. Eng. 1987, 11, 639.[ChemPort]

中国科技论文在线 http://www.paper.edu.cn

a H = 6000 h; J = 4; I = 3; Q = [437000, 324000, 258000]; 250 vi 10000, 300

Rk 10000.

Table 1. Data for Example 1a

 SC1 B1 SC2 T SC3 B2 SC4 B3 SC5 B4 SC6

a or b or c 370 250 370 278 370 250 370 250 370 250 370

 or or 0.22 0.60 0.22 0.49 0.22 0.60 0.22 0.60 0.22 0.60 0.22

i = 1 S or D 1.0 8.28 1.0 1.0 1.0 9.70 1.0 2.95 1.0 6.57 1.0

P0 1.15 9.86 5.28 1.20

g 0.20 0.24 0.40 0.50

d 0.40 0.33 0.30 0.20

i = 2 S or D 1.0 5.58 1.0 1.0 1.0 8.09 1.0 3.27 1.0 6.17 1.0

P0 5.95 7.01 7.00 1.08

g 0.15 0.35 0.70 0.42

d 0.40 0.33 0.30 0.20

i = 3 S or D 1.0 2.34 1.0 1.0 1.0 10.3 1.0 5.70 1.0 5.98 1.0

P0 3.96 6.01 5.13 0.66

g 0.34 0.50 0.85 0.30

d 0.40 0.33 0.30 0.20

Table 2. Data for Example 2a

a or b or c SC1 B1 SC2 SC3 B2 SC4 T SC5 SC6 B3 SC7

 or or 370 592 250 210 582 250 200 250 200 1200 600

g(i = 1, 15) - 0 - - 0 - - - - 0 -

i = 1 S or D 1.2 1.2 1.2 1.2 1.4 1.4 1.0 1.4 1.4 1.0 1.0

P0 - 3.0 - - 1.0 - - - - 4.0 -

i = 2 S or D 1.5 1.5 1.5 1.5 0.0 0.0 1.0 1.5 1.5 1.0 1.0

P0 - 6.0 - - 0.0 - - - - 8.0 -

i = 3 S or D 1.1 1.1 1.1 1.1 1.2 1.2 1.0 1.2 1.2 1.0 1.0

P0 - 2.0 - - 2.0 - - - - 4.0 -

i = 4 S or D 1.5 1.5 1.5 1.5 1.8 1.8 1.0 1.8 1.8 1.0 1.0

P0 - 2.0 - - 1.5 - - - - 3.0 -

i = 5 S or D 1.3 1.3 1.3 1.3 3.0 3.0 1.0 3.0 3.0 1.0 1.0

P0 - 1.0 - - 2.0 - - - - 2.5 -

i = 6 S or D 1.4 1.4 1.4 1.4 2.1 2.1 1.0 2.1 2.1 1.0 1.0

P0 - 2.0 - - 2.5 - - - - 5.0 -

中国科技论文在线 http://www.paper.edu.cn

a Q(m '000) = [40, 30, 10, 35, 33, 27, 25, 22, 20, 19, 15, 12, 9, 7, 5]; H =
8000; I = 15; 300 Vi 2400; 300 Rm 2400. C indicates batch stage; B

indicates semicontinuous stage, T indicates intermediate storage.

i = 7 S or D 1.2 1.2 1.2 1.2 5.2 5.2 1.0 5.2 5.2 1.0 1.0

P0 - 1.0 - - 0.5 - - - - 7.0 -

i = 8 S or D 1.1 1.1 1.1 1.1 2.1 2.1 1.0 2.1 2.1 1.0 1.0

P0 - 4.0 - - 3.5 - - - - 3.0 -

i = 9 S or D 1.3 1.3 1.3 1.3 1.1 1.1 1.0 1.1 1.1 1.0 1.0

P0 - 2.0 - - 3.0 - - - - 2.0 -

i = 10 S or D 1.4 1.4 1.4 1.4 1.5 1.5 1.0 1.5 1.5 1.0 1.0

P0 - 2.5 - - 2.5 - - - - 4.0 -

i = 11 S or D 1.5 1.5 1.5 1.5 1.7 1.7 1.0 1.7 1.7 1.0 1.0

P0 - 3.0 - - 2.0 - - - - 4.0 -

i = 12 S or D 1.2 1.2 1.2 1.2 1.9 1.9 1.0 1.9 1.9 1.0 1.0

P0 - 3.5 - - 4.5 - - - - 6.5 -

i = 13 S or D 1.5 1.5 1.5 1.5 3.7 3.7 1.0 3.7 3.7 1.0 1.0

P0 - 5.0 - - 7.0 - - - - 9.0 -

i = 14 S or D 1.8 1.8 1.8 1.8 2.2 2.2 1.0 2.2 2.2 1.0 1.0

P0 - 4.5 - - 3.0 - - - - 4.0 -

i = 15 S or D 1.5 1.5 1.5 1.5 2.7 2.7 1.0 2.7 2.8 1.0 1.0

P0 - 3.0 - - 2.0 - - - - 6.0 -

Table 3. Results of Example 1a

MP objective function 369728

 GAs SA

objective function 362130 368883

V1 6907 4290

 4290

V2 9918 9930

 9918 9930

V3 5724 5534

 5724 5534

V4 9466 7627

R1 7717, 7717 9252

R2 2189 10000

中国科技论文在线 http://www.paper.edu.cn

a Population size, 100; number of generations, 10; crossover rate, 0.62; mutation
rate, 0.001.

a Population size, 150; number of generations, 15; crossover rate, 0.64; mutation

rate, 0.001.b On an IBM PS/VP 486 DOS6.1.c On a Sun Sparc station.

R3 6537 9675

R4 9466, 9466 10000

R5 9926 9000

R6 5212 390

T 2946 1997

Table 4. Results of Example 2a

 GAs SA

objective function 425676 450983

V1 1148 1590

 1148 1780

V2 1585, 1585 2400, 896

 1585, 1585 1934, 756

V3 1644 1897

 1644 1871

R1 1805 2050, 1645

R2 2061 1512

R3 2268, 2268 1512

R4 2362, 2362 1564, 559

R5 2266 918, 300

R6 1248 1185

R7 1735 2046

T 2172 5131

CPU (min) 4b 10c

中国科技论文在线 http://www.paper.edu.cn

