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Abstract: 

For the first time, genetic algorithms (GAs) are applied to the optimal design of 
the multiproduct batch chemical process (MBCP) successfully. An effective 
multiparameter crossed binary coding method is developed. The GAs have the 
advantages of no special demand for initial values of decision variables, lower 
computer storage, and less CPU time for computation. Better results are obtained 
in comparison with the results of mathematical programming (MP) and simulated 
annealing (SA). The effectiveness of GAs in solving the complex design problem of 
batch chemical process is demonstrated.  

Introduction 

Batch processes are widely used in the chemical process industry and are of 
increasing industrial importance due to a great emphasis on low-volume, high-
value-added chemicals and the need for flexibility in a market-driven 
environment. In the optimal design of a multiproduct batch chemical process 
(MBCP), the production requirement of each product and the total production time 
available for all products are specified. The number and size of parallel 
equipment units in each stage as well as the location and size of intermediate 
storage are to be determined in order to minimize the investment.  

The common approach used by previous research in solving the design problem of 
batch plant has been to formulate it as an MINLP problem and then employ 
optimization techniques to solve it. Mathematical programming (MP) (Grossmann and 
Sargent, 1979; Knopf et al., 1982; Takamatsu et al., 1982), and heuristics (Yeh 
et al., 1987; Modi and Karimi, 1989; Xu et al., 1993) are commonly used. Because 
of the NP-hard nature of the design problem of batch plant, unbearable long 
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computational time will be induced by the use of MP when the design problem is 
somewhat complicated. Severe initial values for the optimization variables are 
also necessary. Moreover, with the increasing size of the design problem, MP will 
be futile. Heuristics needs less computational time, and severe initial values 
for optimization variables are not necessary, but it may end up with a local 
optimum due to its greedy nature. Also, it is not a general method with respect 
to the fact that special heuristic rules will be needed for a special problem. 
Patel et al. (1991) and Tricoire and Malone (1991) applied simulated annealing 
(SA) to solve the design of MBCP. SA performs effectively and gives a solution 
within 0.5% of the global optimum. However, SA has the disadvantage of long 
searching time and so needs more CPU time than heuristics. In order to speed up 
the convergence of SA, Wang et al. (1994) combined SA with heuristics to solve 
the design problem of MBCP, and satisfactory results were obtained.  

To solve the proposed problem more effectively, we apply GAs, an intelligent 
problem-solving method that has demonstrated its effectiveness in solving 
combinatorial optimization problem and the "combinatorial explosion" associate 
with it in many areas to achieve this goal. Some modifications to traditional 
GAs, mainly an effective multiparameter crossed binary coding method, is 
developed, and satisfactory results are obtained.  

The rest of this paper is organized as follows. Section 2 presents the 
mathematical model of MBCP. Section 3 gives a detailed account of the genetic 
algorithms as well as the way of implementation. To demonstrate the effectiveness 
of GAs in solving the proposed problem, section 4 presents two problems adopted 
from Patel et al. (1991) and their computation results using GAs. Comparisons 
with MP and SA are also given. Finally, section 5 presents the summary and 
conclusions.  

Mathematical Model of MBCP 

The optimal design for multiproduct batch processes can all be induced to a MINLP 
model. This paper employs Modi's model modified by Xu et al. (1993). It has the 
following assumptions:  

(1) The processes operate in the way of overlay;  

(2) The devices in the same production line cannot be reused by the same product; 

(3) The long campaign and the single product campaign are considered;  

(4) The type and size of parallel items in- or out-of-phase are the same in one 
batch stage;  

(5) All intermediate tanks are finite ones;  

(6) The operation between stages can be of zero wait or no intermediate tank when 
there is no storage;  

(7) There is no limitation for utility;  

(8) The cleaning time of the batch item can be neglected or included in 
processing time;  
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(9) The size of the devices can change continuously in its own range.  

Assuming that there are J batch stages, K semicotinuous stages, and I products to 
be manufactured; that there are moj out-of-phase groups of parallel units in each 

batch stage in which there are mpj in-phase parallel units of which the sizes are 

all Vj; that there are Rk parallel units in-phase in each semicontinuous stage, 

the operating rates of which are all Rk; that there are S - 1 intermediate tanks 

that divide the whole process into S subsystems; and that let 
 

 
 

 
 
 

 
 
and using the equipment investment as a criterion of optimization, which is 
expressed as a power function of characteristic dimension of equipment, the 
following mathematical model could be obtained: 

 
 
subject to the following: 

(1) Dimension constraints: every equipment alters in its allowable range: 

 
 
 

 
 
(2) Time constraints: the summation of available production time for all products 
is not more than net total time for production: 

 
 
where all the following are true: (a) the productivity for product i: 

 
 
(b) the limiting cycle time for product i in subprocess s: 

 
 
(c) the cycling time for product i in batch stage j: 

 
 
(d) the processing time for product i in batch stage j: 

 
 
(e) the operating time for product i in substrain t: 
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(f) the batch size for product i in subprocess s: 

 
 
(3) The constraints of product quantity: the same product in different subprocess 
posses the same productivity.  

(4) The dimension of intermediate storage is the maximum value of what is needed 
by all products: 

 
 
Using the mathematical model to optimize a design for a given product demand, the 
size and number for each kind of equipment must be calculated to minimize the 
equipment investment. 

Genetic Algorithms 

Genetic Algorithms. Genetic algorithms (GAs), proposed by Holland (1975) and his 
colleagues, are search algorithms based on the mechanics of natural selection and 
natural genetics. They combine the survival of the fittest among string 
structures with a structured yet randomized information exchange to form search 
algorithms with some of the innovative flair of human search. In every 
generation, a new set of artificial creation (strings) is created using bits and 
pieces of the fittest of the old; an occasional new point is tried for good 
measure. While randomized, GAs are no simple random walk. They efficiently 
exploit historical information to speculate on new search points with expected 
improved performance.  

The canonical steps of the GAs can be described as follows:  

(1) The problem to be addressed is defined and captured in an objective function 
that indicated the fitness of any potential solution.  

(2) A population of candidate solutions is initialized subject to certain 
constraints. Typically, each trial solution is coded as a vector x, termed a 
chromosome, with elements being described as solutions represented by binary 
strings. The desired degree of precision would indicate the appropriate length of 
the binary coding.  

(3) Each chromosome, xi, i = 1, ..., P, in the population is decoded into a form 

appropriate for evaluation and is then assigned a fitness score, (xi) according 

to the objective.  

(4) Selection in genetic algorithms is often accomplished via differential 
reproduction according to fitness. In a typical approach, each chromosome is 
assigned a probability of reproduction, pi, i = 1, ..., P, so that its likelihood 

of being selected is proportional to its fitness relative to the other 
chromosomes in the population. If the fitness of each chromosome is a strictly 
positive number to be maximized, this is often accomplished using roulette wheel 
selection (Goldberg, 1989). Successive trials are conducted in which a chromosome 
is selected, until all available positions are filled. Those chromosomes with 
above-average fitness will tend to generate more copies than those with below-
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average fitness.  

(5) According to the assigned probabilities of reproduction, pi, i = 1, ..., P, a 

new population of chromosomes is generated by probabilistically selecting strings 
from the current population. The selected chromosomes generate "offspring" via 
the use of specific genetic operators, such as crossover and bit mutation. 
Crossover is applied to two chromosomes (parents) and creates two new chromosomes 
(offspring) by selecting a random position along the coding and splicing the 
section that appears before the selected position in the first string with the 
section that appears after the selected position in the second string and vice 
versa (see Figure 1). Bit mutation simply offers the chance to flip each bit in 
the coding of a new solution.  

(6) The process is halted if a suitable solution has been found or if the 
available computing time has expired; otherwise, the process proceeds to step 3 
where the new chromosomes are scored, and the cycle is repeated.  

Implementation and Empirical Tuning Methods. (1) Mapping Objective Functions to 
Fitness Form. In many problems, the objective is more naturally stated as the 
minimization of some cost function g(x) rather than the maximization of some 
utility or profit function u(x). Even if the problem is naturally stated in 
maximization form, this alone does not guarantee that the utility function will 
be nonnegative for all x as we require in fitness function (a fitness function 
must be a nonnegative figure of merit; Goldberg, 1989). As a result, it is often 
necessary to map the underlying natural objective function to a fitness function 
form through one or more mappings.  

The duality of cost minimization and profit maximization is well known. In normal 
operations research work, to transform a minimization problem to a maximization 
problem we simply multiply the cost function by a minus one. In genetic algorithm 
work, this operation alone is insufficient because the measure thus obtained is 
not guaranteed to be nonnegative in all instances. With GAs, the following cost-
to-fitness transformation is commonly used: 

 
 
 

 
 
Cmax may be taken as the largest g value observed thus far. For the problem of 

optimal design of MBCP in this paper, we take this transformation form. 

(2) Fitness Scaling. In order to achieve the best results of GAs, it is necessary 
to regulate the level of competition among members of the population. This is 
precisely what we do when we perform fitness scaling.  

Regulation of the number of copies is especially important in small population 
genetic algorithms. At the start of GA runs, it is common to have a few 
extraordinary individuals in a population of mediocre colleagues. If left to the 

Figure 1 One-point crossover operator. 
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normal selection rule (pselecti = fi/ f), the extraordinary individuals would 

take over a significant proportion of the finite population in a single 
generation, and this is undesirable, a leading cause of premature convergence. 
Later on during a run, we have a very different problem. Late in a run, there may 
still be significant diversity within the population; however, the population 
average fitness may be close to the population best fitness. If this situation is 
left alone, average members and best members get nearly the same number of copies 
in future generations, and the survival of the fittest necessary for improvement 
becomes a random walk among the mediocre. In both cases, at the beginning of the 
run and as the run matures, fitness scaling can help.  

There are several methods of fitness scaling, i.e., ranking method (Baker, 1985), 
and linear scaling (Goldberg, 1989). We tried both of them and find that the 
linear scaling is simple and efficient to our problem.  

Let us define the raw fitness f and the scaled fitness f'. Linear scaling 
requires a linear relationship between f' and f as the following: f' = af + b. It 
is required that f'av = fav and f'max = Cfav in which C is the number of expected 

copies desired for the best population member. In the problem, we tried different 
values of C ranging from 1.1 to 2.5. To our experiences, C ranging from 1.2 to 2 
has been used successfully. The best results were obtained with C = 1.3 for 
example 1 and C = 1.5 for example 2.  

From the equation above, we can give 
 

 
 

 
 
In this way, simple scaling helps prevent the early domination of extraordinary 
individuals, while later on it encourages a healthy competition among near 
equals. It improve the performance of GAs in practice. 

(3) Constraints. We deal with the dimension constraints by coding as eq 4 and 
deal with time constraints this way: a genetic algorithm generates a sequence of 
parameters to be tested using the system model, objective function, and the 
constraints. We simply run the model, evaluate the objective function, and check 
to see if any constraints are violated. If not, the parameter set is assigned the 
fitness value corresponding to the objective function evaluation. If constraints 
are violated, the solution is infeasible and thus has no fitness.  

(4) Codings. When GAs manage a practical problem, the parameters of the problem 
are always coded into bit strings. In fact, coding designs for a special problem 
is the key to using GAs effectively. There are two basic principles for designing 
a GAs coding (Goldberg, 1989): (1) The user should select a coding so that short, 
low-order schemata are relevant to the underlying problem and relatively 
unrelated to schemata over other fixed positions. (2) The user should select the 
smallest alphabet that permits a natural expression of the problem.  

Based on the characteristic and structure of MBCP, instead of choosing the 
concatenated, multiparamerted, mapped, fixed-point coding, a multiparameter 
crossed binary coding is designed according to the two principles above. The 
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coding method of a MCBC is as follows: following the order-the numbers of out-of-
phase groups in each bath stages, in-phase parallel units in each of the groups, 
semicontinuous parallel units in each semicontinuous stages, the size of batch 
stages, semicontinuous stages, each parameter is encoded independently in usual 
binary codings (local strings). Then we place the highest bit of each local 
string at the site from 1st to nth in MCBC chromosome and place the second 
highest bit of each local string at the site from (n + 1)th to 2nth, and so on. 
Then we can obtain a MCBC chromosome (Figure 2).  

The reason for using crossed coding can be analyzed in theory as follows: (1) 
Because of the strong relationship among the parameters, the highest bit in each 
local string in binary codings determines the basic structure (relation) among 
every parameter, and the second highest bit in each local string determines finer 
structure among every parameter, and so on for the third, the forth, etc. (2) The 
schema defining length under crossed coding (n) is shorter than the length under 
concatenated, mapped, fixed-point coding (nL - L + 1). According to the schema 
theorem: short schemata cannot be disturbed with high frequency, the schema under 
crossed coding has a greater chance to be reproduced in the next generation. Due 
to its combining the characteristics of function optimization with schema theorem 
and successful binary alphabet table, crossed coding demonstrates greater 
effectiveness than the ordinary coding method in our implementation.  

Local string formation is achieved this way: for a parameter x  [xmin, xmax] that 

needs to be coded, transform it to a binary coding X  [0, 2L] first (appropriate 
length L is determined by the desired degree of precision) and then map it to the 
specified interval [xmin, xmax]. In this way, the precision of this mapped coding 

may be calculated as  = (xmax - xmin)/(2
L - 1). In fact, this means that the 

interval from xmin to xmax is divided into 2
L- 1 parts (because the biggest binary 

string that has a length of L equals the decimal number 20 + 21 + 22 + ... + 2L-1 

= 2L - 1). Then, we can obtain x = xmin + X, and a local string for parameter x 

with a length of L is obtained.  

To illustrate the coding scheme more clearly, we also want to give a simple 
example. For the minimization problem: min z = f(x,y) in which x  [100,500] and 
y  [500,1000], if we adopt a string length of 5 for each local string and X: 
10110, Y: 01101 is an initial solution, we will get the chromosome 1 0 0 1 1 1 0 
0 0 1 (Figure 3) and obtain 

 
 

 

Figure 2 Multiparameter crossed binary codings. 

Figure 3 Multiparameter crossed binary codings. 
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(5) Reproduction. The reproduction operator may be implemented in algorithmic 
form in a number of ways. In this paper, we take the easiest method- Roulette 
wheel (Goldberg, 1989).  

(6) Crossover. Crossover operator can take various forms, i.e., one-point 
crossover, multi-point crossover (Frantz, 1972). It is commonly believed that 
multi-point crossover has better performance. The number of crossover points in a 
multi-points crossover operator is determined by the string structure. In this 
paper, a two-point crossover operator is adopted, and the crossover length is no 
more than one-third of the total string length. The crossover rate plays a key 
role in GA implementation. Different values for crossover rate ranging from 0.4 
to 1.0 were tried, and the results demonstrate that the values ranging from 0.6 
to 0.95 are successful for examples 1 and 2, while 0.62 and 0.64 are the best 
choices for examples 1 and 2, respectively.  

(7) Mutation. The mutation rate is also an important factor in GA implementation. 
We tried different values varying from 0.001 to 0.2. Small mutation rates prevent 
new solution spaces from being explored, while large mutation rate results in the 
search process being at random. According to our experiences, the values ranging 
from 0.001 to 0.1 are found to be successful for a problem as complicated as 
examples 1 and 2. The best results were obtained when we adopted a mutation rate 
of 0.001.  

(8) Population-Related Factors. (a) Population Size. The GA performance is 
influenced heavily by population size. Various values ranging from 20 to 200 
population size were tested. Small populations run the risk of seriously 
undercovering the solution space, which results in local optimum, while large 
populations incur severe computational penalties. According to our experience, a 
population size range from 50 to 150 is enough for a problem as complicated as 
examples 1 and 2 in this paper. The size of 100 for example 1 and 150 for example 
2 were found to be appropriate.  

(b) Initial Population. It is demonstrated that a high-quality initial value 
obtained from another heuristic technique can help GA find better solutions 
rather more quickly than it can from a random start. However, there is possible 
disadvantage in that the chance of premature convergence may be increased. In 
this paper, the initial population is simply chosen by random.  

(9) Termination Criteria. It should be pointed out that there are no general 
termination criteria for GA. Several heuristic criteria are employed in GA, i.e., 
computing time (number of generations), no improvement for search process, or 
comparing the fitness of the best-so-far solution with average fitness of all the 
solutions. All types of termination criteria above were tried; the criteria of 
computing time is proven to be simple and efficient in our problem. In our 
experience, 5-15 generations simulation is enough for a problem as complicated as 
examples 1 and 2 in this paper. The best results were obtained when the number of 
generations were taken as 10 for example 1 and 15 for example 2.  

Examples and Analysis 

Two examples (Patel et al., 1991) are given here to demonstrate the effectiveness 
of GAs. The data for examples 1 and 2 are presented in Tables 1  and 2, 
respectively. The results are presented in Tables 3 and 4. From these results, we 
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can see that better results are obtained in comparison with MP and SA. In 
addition, GAs result in a faster convergence. Patel et al. (1991) pointed out 
that, due to its complicity, example 2 cannot be solved using any existing method 
other than SA. However, GAs deal with it successfully, and the computing time is 
less than that of SA. This demonstrates the effectiveness of GAs in solving the 
complicated design problem of MBCP, which is due to GAs searching from population 
(not a single point) and its parallel computing nature. In fact, the structure of 
GA algorithms is well fit for and makes it very convenient to apply to the 
optimal design problem of MBCP.  

Now, several words about some important aspects in our implication of GAs and 
some problems in practice. The most important of all is the method of coding. 
Because of the characteristics and inner structure of the design problem of MBCP, 
the commonly adopted concatenated, multiparamerted, mapped, fixed-point coding is 
not effective in searching for the global optimum. And it is also the inner 
structure of the design problem of MBCP that gives us some clues for designing 
the above multiparamerter crossed binary coding method. As is evident from the 
results of application, this coding method is well fit for the proposed problem. 

Another aspect that affects the effectiveness of a genetic procedure considerably 
is crossover. Corresponding to the proposed coding method, we adopted a two-point 
crossover method. It is commonly believed that multi-point crossover is more 
effective than the traditional one-point crossover method. However, we find that 
it is not the case that the more points to crossover, the better. It is also 
important to note that the selection of crossover points as well as the way to 
carry out the crossover should take in account the bit-string structure, as is 
the case in our implication.  

Despite the demonstrated advantages of GAs algorithms, the feeling persists that 
there is much to learn about effectively implementing a genetic algorithm. One 
problem in practice is the premature loss of diversity in the population, which 
results in premature convergence. Because premature convergence is so often the 
case in the implementation of GAs according to our calculation experience, 
something has to be done to prevent it. As stated above, fitness scaling is 
exactly what we do to achieve this goal. Our experience makes  it clear that 
fitness scaling can solve the premature problem effectively and conveniently, 
although there might be some other methods that are applicable to this problem.  

At first glance, it would seem that premature convergence is best treated by an 
increase in the mutation rate. As De Jong (1975) pointed out, however, higher 
mutation rates will disrupt the proliferation of high-performance schemata as 
well as poor ones. Our experience validated this.  

Conclusions 

For the first time, GAs are applied to the optimal design problem of MBCP. 
Satisfactory results are obtained. An effective multiparameter crossed binary 
coding method is developed. GAs are well fit for the proposed optimization 
problem and demonstrate the following advantages in application:  

(1) GAs have no special demand for initial values of decision variables. The 
initial population of strings is chosen randomly as long as it does not violate 
the constraints for the problem.  
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(2) As is evident from the computation results, GAs yield highly satisfactory 
global optimum.  

(3) Due to the parallel computing nature, GAs result in faster convergence in 
comparison with MP and SA.  

(4) GAs are simple in structure and are convenient for implementation, with no 
more complicated mathematical calculation than such simple operators as encoding, 
decoding, testing constraints, and computing values of objective.  

aj = cost coefficient for bath stage j 
 

bk = cost coefficient for semicontinuous stage k 
 

Bis = bath size for product i in subprocess s, kg 
 

cs = cost coefficient for intermediate storage 
 

Dik = duty factor for semicontinous stage k for product i 
 

dij = power coefficient for processing time on stage j for product i 
 

gij = coefficient for processing time on stage j for product i 
 

H = horizon, h  

Hi = production time of product i, h 
 

i = index for product  

I = total number of products  

j = index for bath stage  

J = total number of bath stages  

k = index for semicontinous stage  

K = total number of semicontinous stages  

moj = number of out-of-phase groups in bath stage j 
 

mpj = number of in-phase parallel units in each of the out-of-phase groups in 

bath stage j  

nk = number of parallel unites in semicontinous stage k 
 

Pi = productivity of product i, kg/h 
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pij = processing time for product i in stage j, h  

pij
0 = constant in processing time equation for product i in stage j 

 

Qi = demand for product i, kg 
 

Rk = processing rate for semicontinous unit k, L/h 
 

Rk
max = maximum feasible size of semicontinuous stage k 

 

Rk
min = minimum feasible size of semicontinuous stage k 

 

S = total number of subprocesses  

Sij = size factor for bath stage j for product i 
 

S*is = size factor for storage s for product I 
 

t = index for substrain  

T = number of substrains  

tij = recycling time for product i in bath stage j 
 

tLis = limiting cycle time of product i in subprocess s 

 

Vj = size of bath stage j, L 
 

Vj
max = maximum feasible size of bath stage j, L 

 

Vj
min = minimum feasible size of bath stage j, L 

 

V*s = size of intermediate storage s, L 
 

j = cost coefficient for bath stage j 
 

k = cost coefficient for semicontinous stage k 
 

s = cost coefficient for storage s 
 

it = operating time of substrain t for product i 
 

* E-mail: xexu tju.edu.cn. 

 Abstract published in Advance ACS Abstracts, September 1, 1996. 
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a H = 6000 h; J = 4; I = 3; Q = [437000, 324000, 258000]; 250  vi  10000, 300 

Rk  10000. 

Table 1. Data for Example 1a 

  SC1 B1 SC2 T SC3 B2 SC4 B3 SC5 B4 SC6  

a or b or c  370  250  370  278  370 250 370 250 370 250 370  

 or  or   0.22 0.60 0.22 0.49 0.22 0.60 0.22 0.60 0.22 0.60 0.22 

i = 1 S or D 1.0  8.28 1.0  1.0  1.0 9.70 1.0 2.95 1.0 6.57 1.0  

P0    1.15       9.86   5.28   1.20   

g    0.20       0.24   0.40   0.50   

d    0.40       0.33   0.30   0.20   

i = 2 S or D 1.0  5.58 1.0  1.0  1.0 8.09 1.0 3.27 1.0 6.17 1.0  

P0    5.95       7.01   7.00   1.08   

g    0.15       0.35   0.70   0.42   

d    0.40       0.33   0.30   0.20   

i = 3 S or D 1.0  2.34 1.0  1.0  1.0 10.3 1.0 5.70 1.0 5.98 1.0  

P0    3.96       6.01   5.13   0.66   

g    0.34       0.50   0.85   0.30   

d    0.40       0.33   0.30   0.20   

Table 2. Data for Example 2a 

a or b or c SC1 B1 SC2 SC3 B2 SC4 T SC5 SC6 B3 SC7 

 or  or   370 592 250 210 582 250 200 250 200 1200 600 

g(i = 1, 15)  -  0  -  -  0  -  -  -  -  0  -  

i = 1 S or D  1.2 1.2 1.2 1.2 1.4 1.4 1.0 1.4 1.4 1.0 1.0 

P0  -  3.0 -  -  1.0 -  -  -  -  4.0 -  

i = 2 S or D  1.5 1.5 1.5 1.5 0.0 0.0 1.0 1.5 1.5 1.0 1.0 

P0  -  6.0 -  -  0.0 -  -  -  -  8.0 -  

i = 3 S or D  1.1 1.1 1.1 1.1 1.2 1.2 1.0 1.2 1.2 1.0 1.0 

P0  -  2.0 -  -  2.0 -  -  -  -  4.0 -  

i = 4 S or D  1.5 1.5 1.5 1.5 1.8 1.8 1.0 1.8 1.8 1.0 1.0 

P0  -  2.0 -  -  1.5 -  -  -  -  3.0 -  

i = 5 S or D  1.3 1.3 1.3 1.3 3.0 3.0 1.0 3.0 3.0 1.0 1.0 

P0  -  1.0 -  -  2.0 -  -  -  -  2.5 -  

i = 6 S or D  1.4 1.4 1.4 1.4 2.1 2.1 1.0 2.1 2.1 1.0 1.0 

P0  -  2.0 -  -  2.5 -  -  -  -  5.0 -  
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a Q(m '000) = [40, 30, 10, 35, 33, 27, 25, 22, 20, 19, 15, 12, 9, 7, 5]; H = 
8000; I = 15; 300  Vi  2400; 300  Rm  2400. C indicates batch stage; B 

indicates semicontinuous stage, T indicates intermediate storage. 

i = 7 S or D  1.2 1.2 1.2 1.2 5.2 5.2 1.0 5.2 5.2 1.0 1.0 

P0  -  1.0 -  -  0.5 -  -  -  -  7.0 -  

i = 8 S or D  1.1 1.1 1.1 1.1 2.1 2.1 1.0 2.1 2.1 1.0 1.0 

P0  -  4.0 -  -  3.5 -  -  -  -  3.0 -  

i = 9 S or D  1.3 1.3 1.3 1.3 1.1 1.1 1.0 1.1 1.1 1.0 1.0 

P0  -  2.0 -  -  3.0 -  -  -  -  2.0 -  

i = 10 S or D 1.4 1.4 1.4 1.4 1.5 1.5 1.0 1.5 1.5 1.0 1.0 

P0  -  2.5 -  -  2.5 -  -  -  -  4.0 -  

i = 11 S or D 1.5 1.5 1.5 1.5 1.7 1.7 1.0 1.7 1.7 1.0 1.0 

P0  -  3.0 -  -  2.0 -  -  -  -  4.0 -  

i = 12 S or D 1.2 1.2 1.2 1.2 1.9 1.9 1.0 1.9 1.9 1.0 1.0 

P0  -  3.5 -  -  4.5 -  -  -  -  6.5 -  

i = 13 S or D 1.5 1.5 1.5 1.5 3.7 3.7 1.0 3.7 3.7 1.0 1.0 

P0  -  5.0 -  -  7.0 -  -  -  -  9.0 -  

i = 14 S or D 1.8 1.8 1.8 1.8 2.2 2.2 1.0 2.2 2.2 1.0 1.0 

P0  -  4.5 -  -  3.0 -  -  -  -  4.0 -  

i = 15 S or D 1.5 1.5 1.5 1.5 2.7 2.7 1.0 2.7 2.8 1.0 1.0 

P0  -  3.0 -  -  2.0 -  -  -  -  6.0 - 

Table 3. Results of Example 1a 

MP objective function 369728 

  GAs SA  

objective function 362130  368883 

V1  6907  4290  

    4290  

V2  9918  9930  

  9918  9930  

V3  5724  5534  

  5724  5534  

V4  9466  7627  

R1  7717, 7717 9252  

R2  2189  10000 

中国科技论文在线 http://www.paper.edu.cn



a Population size, 100; number of generations, 10; crossover rate, 0.62; mutation 
rate, 0.001. 

a Population size, 150; number of generations, 15; crossover rate, 0.64; mutation 

rate, 0.001.b On an IBM PS/VP 486 DOS6.1.c On a Sun Sparc station. 

 

R3  6537  9675  

R4  9466, 9466 10000 

R5  9926  9000  

R6  5212  390  

T  2946  1997 

Table 4. Results of Example 2a 

  GAs SA  

objective function 425676  450983  

V1  1148  1590  

  1148  1780  

V2  1585, 1585 2400, 896 

  1585, 1585 1934, 756 

V3  1644  1897  

  1644  1871  

R1  1805  2050, 1645 

R2  2061  1512  

R3  2268, 2268 1512  

R4  2362, 2362 1564, 559 

R5  2266  918, 300  

R6  1248  1185  

R7  1735  2046  

T  2172  5131  

CPU (min)  4b  10c 
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