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Abstract

A misunderstanding that an arbitrary phase rotation of the marked state

together with the inversion about average operation in Grover’s search algo-

rithm can be used to construct a (less efficient) quantum search algorithm

is cleared. The π rotation of the phase of the marked state is not only the

choice for efficiency, but also vital in Grover’s quantum search algorithm. The

results also show that Grover’s quantum search algorithm is robust.
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Grover’s quantum search algorithm is one of the most important development in quantum
computation [1]. It achieves quadratic speedup in searching a marked state in an unordered
list over classical search algorithms. As the algorithm involves only simple operations, it is
easy to implement in experiment. By now, it has been realized in NMR quantum computers
[2,3]. Benett et al [4] have shown that no quantum algorithm can solve the search problem
in less than O

√
N steps. Boyer et al [5] have given analytical expressions for the amplitude

of the states in Grover’s search algorithm and given tight bounds. Zalka [6] has improved
this tight bounds and showed that Grover’s algorithm is optimal. Zalka also proposed [7]
an improvement on Grover’s algorithm. In another development, Biron et al [8] generalized
Grover’s algorithm to an arbitrarily distributed initial state. Pati [9] recast the algorithm
in geometric language and studied the bounds on the algorithm.

In each iteration of the Grover’s search algorithm, there are two steps: 1) a selective
inversion of the amplitude of the marked state, which is a phase rotation of π of the marked
state; 2) an inversion about the average of the amplitudes of all basis states. This second step
can be realized by two Hadamard-Walsh transformations and an rotation of π of the all basis
states different from |0〉. Grover’s search algorithm is a series of rotations in an SU(2) space
span by |n0〉, the marked state and |c〉 = 1√

N−1

∑

n 6=n0
|n〉. Each iteration rotates the state

vector of the quantum computer system an angle ψ = 2 arcsin 1√
N

towards the |n0〉 basis of

the SU(2) space. Grover further showed [10] that the Hadamard-Walsh transformation can
be replaced by almost any unitary transformation. The inversions of the amplitudes can be
instead rotated by arbitrary phases [10]. It is believed that [10,7] if one rotates the phases
of the states arbitrarily, the resulting transformation is still a rotation of the state vector of
the quantum computer towards the |n0〉 basis in the SU(2) space. But the angle of rotation
is smaller than ψ. From the consideration of efficiency, the phase rotation of π should be
adopted. This fact has been used to the advantage by Zalka recently [7] to improve the
efficiency of the quantum search algorithm. According to the proposal, the inversion of the
amplitude of the marked state in step 1 is replaced by a rotation through an angle between
0 and π to produce a smaller angle of SU(2) rotation towards the end of a quantum search
calculation so that the amplitude of the marked state in the computer system state vector
is exactly 1.

In this Letter, we show by explicit construction that the above concept is actually wrong.
When the rotation of the phase of the marked state is not π, one can simply not construct
a quantum search algorithm at all. Suppose the initial state of the quantum computer is

|φ〉 = B0|n0〉 + A0
1√
N − 1

∑

n 6=n0

|n〉. (1)

The modified quantum search algorithm now consists of the following two steps: 1) |n0〉 →
eiθ|n0〉; 2) an inversion about the average operation D, whose matrix elements are:

Dij =

{

2
N
, i 6= j

2
N
− 1, i = j

(2)

After each iteration of the modified Grover’s quantum search, the state vector still has the
form of (1). The recurrent formula for the amplitudes are

Bj+1 = −N − 2

N
eiθBj +

2
√
N − 1

N
Aj ,
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Aj+1 =
2
√
N − 2

N
eiθBj +

N − 2

N
Aj . (3)

Denoting cosψ = N−2
N

, sinψ = 2
√
N−1
N

, we can rewrite the recurrent relation in matrix form:

(

Bj+1

Aj+1

)

=

(

− cosψeiθ sinψ
sinψeiθ cosψ

)(

Bj

Aj

)

. (4)

It is not difficult to diagonalize the transformation matrix. The eigenvalues are:

λ1,2 = eiγ1,2 , (5)

with

sin γ1,2 =
− sin θ cosψ ± 2

√

1 − cosψ2 sin2 θ sin θ
2

2
. (6)

It is worth pointing that the two eigen-phases satisfy γ1 + γ2 = π + θ. The corresponding
normalized eigenvectors are the column vectors of the matrix U ,

U =







sinψ√
2(1−cosψ cos γ2)

− cosψ+eiγ2√
2(1−cosψ cos γ2)

cosψeiθ+eiγ1√
2(1−cosψ cos γ2)

sinψeiθ√
2(1−cosψ cos γ2)





 . (7)

This U matrix is unitary and diagonalizes the transformation matrix in (4), that is U−1TU
is diagonal. The amplitude of the marked state after j + 1 iterations is

Bj+1 =
sinψ

2(1 − cosψ cos γ2)
ei(j+1)γ1

[

sinψB0 + (cosψe−iθ + e−iγ1)A0

]

+
− cosψ + eiγ2

2(1 − cosψγ2)
ei(j+1) cos γ2

[

(− cosψ + e−iγ2)B0 + sinψe−iθA0

]

. (8)

When θ = π and B0 =
√

1
N

, A0 =
√

N−1
N

, we recover the original Grover’s quantum search

algorithm, and Bj+1 = sin((j + 1 + 1/2)ψ) as given by Boyer et al [5].
To see the effect of the rotation angle θ on the quantum search algorithm, we plot the

norm |Bj+1| with respect to θ. As examples, we draw in Fig. 1. |B4|, and |B7| in Fig. 2. For

simplicity, N = 100, B0 =
√

1
N

and A0 =
√

N−1
N

. From these studies, we see the following
points:

1) as j increases, |Bj| increases too for small j values for θ = π. When θ = π, Grover’s
original quantum search algorithm is working.

2) For other values of θ between 0 and 2π, the dependence of |Bj+1| on θ is not monotonic.
There are oscillations. There are peaks and valleys in the values of |B| for a given j. What
is more, when j changes, the positions of these peaks and valleys change too. In other
words, at a given θ value, |Bj+1| does not always increase when j increases. For instance,
when j = 3, there is only one peak for θ between 0 and π, whereas for j = 6, there are
3 peaks. This is contrary to the common expectation that for small number of iterations,
|Bj+1| should monotonically increase, though not as big as the standard Grover’s quantum
search algorithm.
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3) For a θ different from π, even one increases the number of iterations, the norm of the
amplitude of the marked state can not reach one. There is a limit at which the norm of the
amplitude can reach. In Fig 3. and Fig. 4, we plot the |Bj+1| versus j for θ = π

4
and θ = π

3

respectively. The behavior is quite interesting. For θ = π
4
, there is rapid irregular oscillations

in the norm. In particular, the maximum height is only about 0.15. The minimum is not
zero, it is about 0.07. For θ = π

3
, the plot can be seen as three lines at an interval of 3

points. Again, the maximum height is small, only about 0.18. The norm of the amplitude is
in a range between 0.06 and 0.18. Even if one increases the number of iterations, the norm
can not be increased any further. In this case, we have ploted j up to 100, which is equal
to the number of items in the unsorted system.

4) In the vicinity of π, the algorithm still works, though the height of the norm can not
reach 1. But it can still reach a considerably large value. This shows that Grover’s quantum
search algorithm is robust with respect to θ at π. This is important as an imperfect gate
operation may lead to a phase rotation not exactly equal to π. Grover’s quantum search
algorithm has a good tolerance on the phase rotating angle near π. A small deviation from
π will not destroy the algorithm.

To summarize, we see that θ = π is not only a requirement for efficiency, but also
a necessary condition for the algorithm. At this angle, the algorithm is also robust. To
achieve a smaller increase in the marked state amplitude(or a smaller rotation towards the
marked state basis in the SU(2) space), one has to resort to more complicated modifications
to Grover’s quantum search algorithm.

Encouragement from Prof. Prof. Haoming Chen is gratefully acknowledged. We thank
Prof. Grover for helpful email discussions regarding Grover’s quantum search algorithms
and bringing our attention new references on the algorithm.
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FIG. 1. |B4| versus θ.
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FIG. 2. |B7| versus θ.

20 40 60 80 100
j

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

|Bj+1|

FIG. 3. |Bj+1| versus j for θ = π
4 .
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FIG. 4. |Bj+1| versus j for θ = π
3 .
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FIG. 5. |Bj+1| versus j for θ = π
1.1 .
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