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Abstract

Two 4-node quadrilateral membrane elements, denoted as AGQ6-I and AGQ6-II, have been developed in this

paper. Instead of the traditional isoparametric coordinate, the quadrilateral area coordinates were used to establish the

formulations of the new elements. And several generalized conforming conditions were then introduced to determine all

unknown parameters. Numerical examples showed that the presented elements exhibit excellent performances in both

regular and distorted mesh divisions. They could even yield exact solutions for pure bending problems under distorted

meshes and provide lock-free solutions for the MacNeal’s test problem of trapezoidal locking. Besides, the weak patch

test was conducted to guarantee the convergence of both new elements. It has also been demonstrated that the area

coordinate method is an efficient tool for developing simple, effective and reliable serendipity plane membrane ele-

ments.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the isoparametric coordinates (n; g) have been broadly applied in the constructions of quadrilateral

membrane elements, such formulation approach still has several disadvantages. For examples, in most of the ordinary

cases (i.e., when the shape of the element is not a parallelogram), (1) the isoparametric coordinates (n; g) cannot be
expressed in terms of the Cartesian coordinates (x; y) in finite terms; (2) The element stiffness matrix contains the de-

terminant of Jacobian inverse, for which the value obtained by numerical integration is usually only an approximation;

etc.

Lee and Bathe [1] have studied the influence of mesh distortion on the isoparametric membrane elements and

showed that the serendipity family is very sensitive to the mesh distortion. The reasons may be given as follows. The

displacement field of a high order serendipity element is expressed with a high order complete polynomial in the iso-

parametric coordinate system (n; g). In the case of a rectangular element, the transformation between (n; g) and (x; y) is
linear, and the displacement field can also be expressed with a complete polynomial of the same high order in the

Cartesian coordinate system (x; y), so the rectangular element usually possesses high precision. In the case of a distorted

element, the transformation between (n; g) and (x; y) is nonlinear, and the order of the complete polynomial in the

Cartesian coordinate system will descend to 1, so the precision of the distorted element is low. That is to say, when the
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element is distorted from rectangle to irregular quadrilateral, the transformation between (n; g) and (x; y) is changed

from linear to nonlinear, then the complete order of (x; y) of displacement field will drop dramatically. This is the

explanation why serendipity quadrilateral membrane elements perform badly when they are distorted.

In view of the shortcomings of the isoparametric coordinates mentioned above, a new natural coordinate system,

that is, the quadrilateral area coordinate method was proposed in Refs. [2,3]. The quadrilateral area coordinate system

possesses an important advantage: the transformation between the area coordinates and the Cartesian coordinates is

always linear. Thus, the order of the displacement field expressed by the area coordinates will not vary with the mesh

distortion, and as a result, it makes the element insensitive to mesh distortion. Based on the quadrilateral area coor-

dinate method presented in Refs. [2,3], two 8-node membrane elements AQ8-I and AQ8-II, and a 4-node plate-bending

element ACGCQ, were successfully developed in Refs. [4,5], respectively. Compared with those traditional models using

isoparametric coordinates, these new elements are even less sensitive to mesh distortion.

The sensitive problem for a distorted 4-node quadrilateral membrane element has always attracted many re-

searchers for the past years. MacNeal presented several benchmark problems [6] and the corresponding theorem [7]

for checking the trapezoidal locking of the 4-node membrane element. For improving the accuracy and overcoming

trapezoidal locking, many approaches have been proposed, such as introducing additional bubble displacement

fields and internal degrees of freedom [8,9], the stress hybrid element methods [10–12], the quasi-conforming ele-

ment method [13], the assumed strain element methods [14,15], and so on. Though all of these skills can enhance the

elements’ performance more or less, few models can pass the trapezoidal locking test examples proposed in Ref. [6]

perfectly.

In order to overcome sensitivity to mesh distortion, the appearance of non-conforming elements seemed to be

inevitable. Irons et al. [16,17] proposed a simple approach, namely, patch test, for examining the convergence of the

non-conforming elements. This constant strain/stress patch test has been adopted very broadly in finite element

analysis, but it also arose many discussions at the same time [18–21]. It usually includes two types: the ‘‘strict’’ form

and the ‘‘weak’’ form [22]. The strict patch test is easy to be carried out only using a fixed mesh division, i.e., the

number and the sizes of all elements in the mesh will never be changed during the whole procedure. It requests that the

element can yield exact solutions under such fixed conditions. Unlike the strict form, the weak patch test does not need

exact solutions under a coarse, fixed mesh division. If, as the mesh is repeatedly subdivided, elements come to display

the expected state of constant strain/stress, then the element is said to have passed the weak patch test, and convergence

to correct results is assured. It is obviously that the thought of the weak patch test is more consistent with the concept

of convergence.

The main purpose of this paper is to find an effective way to construct robust elements that are insensitive to the

mesh distortion. For this goal, two new 4-node quadrilateral membrane elements, denoted as AGQ6-I and AGQ6-II,

are developed. Their displacement fields u and v include four nodal degrees of freedom (DOFs) and two internal DOFs,

respectively. And other larruping characters can be listed as follows:

(1) The displacement filed is expressed with the polynomial in area coordinates (instead of the isoparametric coordi-

nates). Thus, whether the element is distorted or not, the order of the complete polynomial in the Cartesian coor-

dinates system (x; y) will not change.
(2) Various generalized conforming conditions [4,5,23–26] are adopted for determining displacement field, including

nodal version conforming conditions, and integral form conforming conditions of the displacement along the pe-

rimeter of the element.

(3) Only the weak patch test, instead of the strict form, is used to assure the convergence of the elements.

(4) The internal DOFs are condensed during the element analysis level. Therefore, the element stiffness matrix is still an

8 · 8 matrix after condensation.
2. Area coordinates for quadrilateral elements

As shown in Fig. 1, the position of an arbitrary point P within a quadrilateral element 1234 is specified by the area

coordinates L1, L2, L3 and L4, which are defined as [2,3]:
Li ¼
Ai

A
ði ¼ 1; 2; 3; 4Þ ð1Þ
where A is the area of the quadrilateral element; Ai (i ¼ 1; 2; 3; 4) are the areas of the four triangles constructed by point

P and four element sides 23, 34, 41 and 12, respectively.
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Fig. 1. Definition of the quadrilateral area coordinates Li.
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L1, L2, L3 and L4 can be expressed in terms of Cartesian coordinates (x; y) as follows:
Li ¼
1

2A
ðai þ bixþ ciyÞ ði ¼ 1; 2; 3; 4Þ ð2Þ
where
ai ¼ xjyk � xkyj; bi ¼ yj � yk ; ci ¼ xk � xj; i; j; k
���! ���

¼ 1; 2; 3; 4
�����! �����

ð3Þ
and (xi; yi) (i ¼ 1; 2; 3; 4) are the Cartesian coordinates of the four corner nodes.

The following four dimensionless parameters g1, g2, g3 and g4 to each of the quadrangles, as shown in Fig. 2. are

introduced:
g1 ¼
A0

A
; g2 ¼

A00

A
; g3 ¼ 1� g1; g4 ¼ 1� g2 ð4Þ
where A0 and A00 are the areas of D124 and D123, respectively.
It is obvious that any point in a plane problem has two DOFs. Therefore, only two of the coordinates Li

(i ¼ 1; 2; 3; 4) are independent. It can be shown that Li (i ¼ 1; 2; 3; 4) must satisfy [2] the following conditions:
L1 þ L2 þ L3 þ L4 ¼ 1 ð5Þ
g4g1L1 � g1g2L2 þ g2g3L3 � g3g4L4 ¼ 0 ð6Þ
Note that Li (i ¼ 1; 2; 3; 4) can also be expressed in terms of the quadrilateral isoparametric coordinates (n; g) as

follows:
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Fig. 2. Definition of the four parameters g1, g2, g3 and g4.
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L1 ¼
1

4
ð1� nÞ½g2ð1� gÞ þ g3ð1þ gÞ�

L2 ¼
1

4
ð1� gÞ½g4ð1� nÞ þ g3ð1þ nÞ�

L3 ¼
1

4
ð1þ nÞ½g1ð1� gÞ þ g4ð1þ gÞ�

L4 ¼
1

4
ð1þ gÞ½g1ð1� nÞ þ g2ð1þ nÞ�

ð7Þ
The area coordinates of four corner nodes are
1: ðg2; g4; 0; 0Þ 2: ð0; g3; g1; 0Þ 3: ð0; 0; g4; g2Þ 4: ðg3; 0; 0; g1Þ
In a quadrilateral element, the following basic formulae can be used to evaluate the line integral for arbitrary power

functions of area coordinates along each side Li ¼ 0 (i ¼ 1; 2; 3; 4):

(i) Along side 12 (L4 ¼ 0)Z 1

0

Lm
1 L

n
2L

p
3 d�ss ¼

m!n!p!
ðmþ nþ p þ 1Þ! g

m
2 g

p
1

Xn

k¼0
gn�k3 gk4C

p
pþn�kC

m
mþk ð8aÞ

(ii) Along side 23 (L1 ¼ 0)Z 1

0

Ln
2L

p
3L

q
4 d�ss ¼

n!p!q!
ðnþ p þ qþ 1Þ! g

n
3g

q
2

Xp

k¼0
gp�k4 gk1C

q
qþp�kC

n
nþk ð8bÞ

(iii) Along side 34 (L2 ¼ 0)Z 1

0

Lp
3L

q
4L

m
1 d�ss ¼

p!q!m!
ðp þ qþ mþ 1Þ! g

p
4g

m
3

Xq

k¼0
gq�k1 gk2C

m
mþq�kC

p
pþk ð8cÞ

(iv) Along side 41 (L3 ¼ 0)Z 1

0

Lq
4L

m
1 L

n
2 d�ss ¼

q!m!n!
ðqþ mþ nþ 1Þ! g

q
1g

n
4

Xm
k¼0

gm�k2 gk3C
n
nþm�kC

q
qþk ð8dÞ

where �ss is a dimensionless coordinate along each side, and it is 0 at the starting node and 1 at ending node; m, n, p and q
are arbitrary positive integers; and Cn

m is defined as
Cn
m ¼

m!
ðm� nÞ!n! ð9Þ
And two equivalent basic integral formulae, which can be used to evaluate the area integrals for the arbitrary power

function of area co-ordinates, are given as follows:
Z Z
A
Lm
1 L

n
2L

p
3L

q
4 dA ¼

m!n!p!q!
ðmþ nþ p þ qþ 2Þ! � 2A � gmþnþ13

Xq

k¼0

Xp

j¼0
Cm

mþq�kC
n
nþp�jC

k
kþjg

k
2g

j
4g

pþq�k�j
1

"

þ gpþqþ11

Xm
k¼0

Xn

j¼0
Cq

mþq�kC
p
nþp�jC

k
kþjg

k
2g

j
4g

mþn�k�j
3

#
ð10aÞ

Z Z
A
Lm
1 L

n
2L

p
3L

q
4 dA ¼

m!n!p!q!
ðmþ nþ p þ qþ 2Þ! � 2A � gnþpþ14

Xm
k¼0

Xq

j¼0
Cn

nþm�kC
p
pþq�jC

k
kþjg

k
3g

j
1g

mþq�k�j
2

"

þ gmþqþ12

Xn

k¼0

Xp

j¼0
Cm

mþn�kC
q
qþp�jC

k
kþjg

k
3g

j
1g

nþp�k�j
4

#
ð10bÞ
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3. Formulations of the element AGQ6-I

3.1. Element nodal displacement vector fqge and internal parameter vector fkge

Consider the quadrilateral element shown in Fig. 3, the element nodal displacement vector fqge is given by
fqge ¼ ½ u1 v1 u2 v2 u3 v3 u4 v4 �T ð11Þ
In addition, the displacement field u is assumed to include two internal parameters k1 and k2, and v is also assumed

to include two internal parameters k01 and k02. These four parameters form the internal parameter vector fkge
fkge ¼ ½ k1 k01 k2 k02 �
T ð12Þ
Thus, the displacement fields of the element can be expressed by the sum of fqge and fkge.
u
v

� �
¼ u0

v0

� �
þ uk

vk

� �
¼ ½Nq�fqge þ ½Nk�fkge ð13Þ
where u0 and v0 are the essential displacement fields related to fqge; uk and vk are the additional internal displacement

fields related to fkge;
½Nq� ¼
N 0

1 0 N 0
2 0 N 0

3 0 N 0
4 0

0 N 0
1 0 N 0

2 0 N 0
3 0 N 0

4

� �
ð14Þ

½Nk� ¼
Nk1 0 Nk2 0
0 Nk1 0 Nk2

� �
ð15Þ
which are the shape function matrix and the internal parameter shape function matrix, respectively.

3.2. Shape functions N 0
i

The shape functions for u0 and v0 have the same forms. So only the derivation of u0 is given as follows.

Let u0 be the second-order polynomial in terms of the area coordinates Li (i ¼ 1; 2; 3; 4)
u0 ¼ a1 þ a2ðL3 � L1Þ þ a3ðL4 � L2Þ þ a4ðL3 � L1ÞðL4 � L2Þ ð16Þ
where a1, a2, a3 and a4 are four unknown constants. In order to determine these four constants, four generalized

conforming conditions are introduced, i.e.
X4

i¼1
ðu0 � ~uuÞi ¼ 0;

X4

i¼1
ðu0 � ~uuÞinigi ¼ 0;

I
oA

�llðu0 � ~uuÞds ¼ 0;

I
oA
mðu0 � ~uuÞds ¼ 0 ð17Þ
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Fig. 3. A 4-node quadrilateral membrane element.
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where the first two are the combination forms of the nodal conforming conditions, and the other two are the integral

form conforming conditions along the perimeter oA of the element; ~uu is the displacement at the element boundary; �ll and
m are the direction cosines of the outer normal along the element boundary.

Then, the shape functions N 0
i (i ¼ 1; 2; 3; 4) can be obtained from equation (17):
N 0
i ¼ �

gk
2
þ Li þ Lj þ nigigkP ði ¼ 1; 2; 3; 4; j ¼ 2; 3; 4; 1; k ¼ 3; 4; 1; 2Þ ð18Þ
with
P ¼
3ðL3 � L1ÞðL4 � L2Þ � ðg2 � g3ÞðL3 � L1Þ � ðg1 � g2ÞðL4 � L2Þ � 1

2
ðg2g4 � g1g3Þ

1þ g1g3 þ g2g4
ð19Þ
3.3. Internal parameter shape functions Nki

The shape functions of the internal displacement fields are given by
Nk1 ¼ L1L3

Nk2 ¼ L2L4

ð20Þ
It can be seen that the nodal values of these two shape functions are both zero. When the element shape degenerates to

rectangle, Nki (i ¼ 1; 2) will be the same as the internal parameter shape functions of the element Q6 proposed by Wilson

et al. [8].

3.4. Element stiffness matrix

Substitution of Eqs. (18) and (20) into (13) yields the displacement fields. It can be shown that such displacement

fields are the complete second-order polynomial in terms of the Cartesian coordinates (x; y).
Then, by utilizing the transformation of derivatives of first order [3]:
o

ox
o

oy

8>><
>>:

9>>=
>>; ¼

1

2A
b1 b2 b3 b4
c1 c2 c3 c4

� �
o

oL1

o

oL2

o

oL3

o

oL4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð21Þ
the element strain vector fege can be obtained:
fege ¼ ½Bq�fqge þ ½Bk�fkge ð22Þ
where
fege ¼ ½ ex ey cxy �T ð23Þ

½Bq� ¼ ½Bq1� ½Bq2� ½Bq3� ½Bq4�½ � ð24Þ
with
½Bqi� ¼

oN 0
i

ox
0

0
oN 0

i

oy
oN 0

i

oy
oN 0

i

ox

2
66666664

3
77777775
ði ¼ 1; 2; 3; 4Þ ð25Þ
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and
oN 0
i

ox
¼ bi

2A
þ bj
2A
þ nigigk
2Að1þ g1g3 þ g2g4Þ

Sx

oN 0
i

oy
¼ ci

2A
þ cj
2A
þ nigigk
2Að1þ g1g3 þ g2g4Þ

Sy

ði ¼ 1; 2; 3; 4; j ¼ 2; 3; 4; 1; k ¼ 3; 4; 1; 2Þ ð26aÞ

Sx ¼
P4

i0¼1 bi0ni0gi0 ½3ðLj0 � Lm0 Þ þ ðgj0 � gk0 Þ�
Sy ¼

P4

i0¼1 ci0ni0gi0 ½3ðLj0 � Lm0 Þ þ ðgj0 � gk0 Þ�
i0 ¼ 1; 2; 3; 4

�����! �����
j0 ¼ 2; 3; 4; 1

�����! �����
k0 ¼ 3; 4; 1; 2

�����! �����
m0 ¼ 4; 1; 2; 3

�����! �����
0
@

1
A ð26bÞ

½Bk� ¼ ½Bk1� ½Bk2�½ � ð27Þ
with
½Bki� ¼

oNki

ox
0

0
oNki

oy
oNki

oy
oNki

ox

2
6666664

3
7777775 ði ¼ 1; 2Þ ð28Þ
and
oNki

ox
¼ bi

2A
Liþ2 þ

biþ2
2A

Li

oNki

oy
¼ ci

2A
Liþ2 þ

ciþ2
2A

Li

ði ¼ 1; 2Þ ð29Þ
After condensation [8], the element stiffness matrix of the element can be expressed by
½K�e ¼ ½Kqq� � ½Kkq�T ½Kkk��1½Kkq� ð30Þ
with
½Kqq� ¼
Z Z

A
½Bq�T ½D�½Bq�tdA

½Kkk� ¼
Z Z

A
½Bk�T ½D�½Bk�tdA

½Kkq� ¼
Z Z

A
½Bk�T ½D�½Bq�tdA

ð31Þ
where t is the thickness of element; [D] is the elasticity matrix
½D� ¼ E
1� l2

1 l 0

l 1 0

0 0
1� l
2

2
664

3
775 ð32Þ
where E and l are Young’s modulus and Poisson’s ratio, respectively. For plane strain problems, the E and l in Eq. (32)

should be replaced by E=ð1� l2Þ and l=ð1� lÞ, respectively.
By using the integration formulae equation (10), the explicit expression of ½K�e can be obtained. However, the

numerical integration method would be more convenient for computer coding. Thus, by using Eq. (7), Eq. (31) can be

expressed in terms of isoparametric coordinates as follows:
½Kqq� ¼
Z 1

�1

Z 1

�1
½Bq�T ½D�½Bq�tjJjdndg

½Kkk� ¼
Z 1

�1

Z 1

�1
½Bk�T ½D�½Bk�tjJjdndg

½Kkq� ¼
Z 1

�1

Z 1

�1
½Bk�T ½D�½Bq�tjJjdndg

ð33Þ
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where jJj is the Jacobian determinant, which is the same as that of the 4-node isoparametric element Q4. Since there are

no jJj�1 (the Jacobian inverse) in ½Bq� and ½Bk�, exact value of ½K�e can be determined by numerical integration when the

3· 3 Gauss integration points are employed.

The new element obtained is named AGQ6-I.
4. Formulations of the element AGQ6-II

The construction procedure of the element AGQ6-II is similar to that of AGQ6-I. The only difference is the

expression of their shape functions.

The displacement u0 of the element AGQ6-II is still given by Eq. (16). But the conforming conditions are changed to

the following combination conditions at the element nodes:
X4

i¼1
ðu0 � ~uuÞi ¼ 0;

X4

i¼1
ðu0 � ~uuÞini ¼ 0;

X4

i¼1
ðu0 � ~uuÞigi ¼ 0;

X4

i¼1
ðu0 � ~uuÞinigi ¼ 0 ð34Þ
Substitution of Eq. (16) into Eq. (34) yields
X4

i¼1
ui ¼ 4a1 þ 2ðg1 � g2Þa2 þ 2ðg2 � g3Þa3 þ 2ðg2g4 � g1g3Þa4

X4

i¼1
uini ¼ 2a2

X4

i¼1
uigi ¼ 2a3

X4

i¼1
uinigi ¼ 2ðg3 � g2Þa2 þ 2ðg2 � g1Þa3 þ 2ðg2g4 þ g1g3Þa4

ð35Þ
Then, the shape functions of the element AGQ6-II can be obtained:
N 0
i ¼ �

gk
2
þ Li þ Lj þ nigigkP ði ¼ 1; 2; 3; 4; j ¼ 2; 3; 4; 1; k ¼ 3; 4; 1; 2Þ ð36Þ
with
P ¼ 1

g2g4 þ g1g3
½ðL3 � L1ÞðL4 � L2Þ �

1

2
ðg2g4 � g1g3Þ� ð37Þ
The derivatives of N 0
i respect to x and y are given by
oN 0
i

ox
¼ bi

2A
þ bj
2A
þ nigigk
2Aðg1g3 þ g2g4Þ

�SSx

oN 0
i

oy
¼ ci

2A
þ cj
2A
þ nigigk
2Aðg1g3 þ g2g4Þ

�SSy

ði ¼ 1; 2; 3; 4; j ¼ 2; 3; 4; 1; k ¼ 3; 4; 1; 2Þ ð38aÞ

�SSx ¼
P4

i0¼1 bi0ni0gi0 ðLj0 � Lm0 Þ
�SSy ¼

P4

i0¼1 ci0ni0gi0 ðLj0 � Lm0 Þ

�
i0 ¼ 1; 2; 3; 4

�����! �����
; j0 ¼ 2; 3; 4; 1

�����! �����
; m0 ¼ 4; 1; 2; 3

�����! ������
ð38bÞ
Substitution of Eq. (38) into (24) yields the matrix [Bq] of the element AGQ6-II. And other formulations of the element

AGQ6-II are the same as those of the element AGQ6-I.
5. Numerical examples

Eight benchmark problems, which are listed in Table 1, have been used to evaluate the performance of the elements

AGQ6-I and AGQ6-II. Among these examples, the sixth and seventh ones are two well-known severe examinations for

testing the sensitivity to mesh distortion of the quadrilateral elements. The results solved by other 16 element models

listed in Table 2 are also given for comparison.



Table 1

List of eight benchmark problems

Benchmark problems, figure number Results

1 Beam divided by five quadrilateral elements, Fig. 4 Table 3

2 Beam divided by four quadrilateral elements, Fig. 5 Table 4

3 Cook’s skew beam problem, Fig. 6 Table 5

4 Thick curving beam, Fig. 7 Table 6

5 Thin curving beam, Fig. 8 Table 7

6 MacNeal’s thin beam with distorted mesh, Fig. 9 Table 8

7 Beam divided by two elements with distortion parameter, Fig. 10 Table 9

8 Weak patch test of constant strain problem, Fig. 11 Table 10

Table 2

List of element models for comparison

No. Symbols Elements for comparison References

1 Q4 4-node isoparametric element

2 QUAD4 4-node element in MSC/NASTRAN [6]

3 Q6 4-node isoparametric element with internal parameters [8]

4 QM6 4-node isoparametric element with internal parameters [9]

5 P-S Stress hybrid element [10]

6 NQ6 Hybrid element [11]

7 RGD20 Refined hybrid element [12]

8 QC6 Quasi-conforming element [13]

9 PEAS7 Assumed strain element [14]

10 QE2 Assumed strain element [15]

11 B-Q4E Assumed strain element [15]

12 HL 4-node isoparametric element with internal parameters [27]

13 PN340 PN element [28]

14 ANSYS Commercial program

15 D-type Membrane element with drilling DOFs [29]

16 Q4S Membrane element with drilling DOFs [30]
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Example 1. Cantilever beam divided by five quadrilateral elements (Fig. 4)

The cantilever beam, as shown in Fig. 4, is divided by five irregular quadrilateral elements. And two loading cases

are considered: (a) pure bending under moment M ; (b) linear bending under transverse force P . The Young’s modulus

E ¼ 1500, Poisson’s ratio l ¼ 0:25. The results of the vertical deflection vA at point A and the stress rxB at point B are

given in Table 3.

Compared with the results solved by other element models, it can be seen from Table 3 that the new elements AGQ6-

I and AGQ6-II give the best answers. Furthermore, exact solutions can even be obtained by the presented elements for

the pure bending case.
2 

A 

1 1 2 3  3 

4 1 1 2 2 

B 

P=150 P=150

M=2000 

P=150 

Fig. 4. Cantilever beam with five irregular elements.



Table 3

The deflections and stresses at selected locations for bending problems of a cantilever beam (Fig. 4)

Elements Load M Load P

vA rxB vA rxB

Q4 45.7 )1761 50.7 )2448
Q6 98.4 )2428 100.4 )3354
QC6 96.1 )2439 98.1 )3339
NQ6 96.1 )2439 98.0 )3294
QM6 96.07 )2497 97.98 )3235
P-S 96.18 )3001 98.05 )3899
QE-2 96.5 )3004 98.26 )3906
B-Q4E 96.5 )3004 98.26 )3906
AGQ6-I 100.0 )3000 102.0 )4151
AGQ6-II 100.0 )3000 102.7 )4180
Exact 100.0 )3000 102.6 )4050

A 

B

16 4

12

8 20 

12121212

40

E=30000  =0.25 t=1 µ

Fig. 5. Cantilever beam with four irregular elements.
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Example 2. Cantilever beam divided by four quadrilateral elements (Fig. 5)

As shown in Fig. 5, the cantilever beam is divided by four irregular quadrilateral elements. The results of the de-

flections at the tip points A and B are shown in Table 4.

From the Table 4, it can be seen again that the two present elements possess the best precisions, and even better than

the elements D-type and Q4S with vertex drilling DOFs (the total DOF number of the elements D-type or Q4S is 12

because of the additional vertex drilling DOFs).

Example 3. Cook’s skew beam problem (Fig. 6)

This example, in which a skew cantilever with shear distributed load at the free edge, as shown in Fig. 6, was

proposed by Cook et al. [22]. The results of vertical deflection at point C, the maximum principal stress at point A and

the minimum principal stress at point B are listed in Table 5. Compared with the other elements, the present elements

exhibit the best convergence.
Table 4

The deflections at selected locations for bending problem of a cantilever beam (Fig. 5)

Element Tip deflections Normalized values

Point A Point B Average Point A Point B Average

Q4 0.2126 0.2131 0.2129 0.598 0.599 0.598

D-type – – 0.3065 – – 0.861

Q4S – – 0.2978 – – 0.837

AQ6-I 0.3510 0.3509 0.3510 0.987 0.986 0.987

AQ6-II 0.3535 0.3530 0.3533 0.994 0.992 0.993

Reference value 0.3558 1.000
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Fig. 6. Cook’s skew beam problem.

Table 5

Results of Cook’s skew beam (Fig. 6)

Element vC rAmax rBmin

2 · 2 4· 4 8· 8 16 · 16 2 · 2 4· 4 8 · 8 16 · 16 2 · 2 4 · 4 8 · 8 16 · 16

Q4 11.80 18.29 22.08 23.43 0.1217 0.1873 0.2242 0.2311 )0.0960 )0.1524 )0.1869 )0.1966
Q6 22.94 23.48 23.80 23.91 0.2029 0.2258 0.2334 0.2361 )0.1734 )0.1915 )0.1997 )0.2028
QM6 21.05 23.02 – – 0.1928 0.2243 – – )0.1580 )0.1856 – –

HL 18.17 22.03 23.39 – 0.1582 0.1980 – – )0.1335 )0.1770 – –

P-S 21.13 23.02 – 23.88 0.1854 0.2241 – 0.2364 – – – –

QE-2 21.35 23.04 – 23.88 0.1956 0.2261 – 0.2364 – – – –

B-4E 21.35 23.04 – 23.88 0.1956 0.2261 – 0.2364 – – – –

AGQ6-I 23.07 23.68 23.87 23.93 0.2023 0.2275 0.2351 0.2365 )0.1758 )0.1972 )0.2016 )0.2033
AGQ6-II 25.92 24.37 24.04 23.97 0.2169 0.2286 0.2352 0.2365 )0.1999 )0.2014 )0.2027 )0.2035
Reference

solutiona

23.96 0.2362 )0.2023

aResults of the element GT9M8 [26] using 64 · 64 mesh.
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Example 4. Thick curving beam (Fig. 7)

A cantilever thick curving beam, which is divided by five elements, is subjected to a transverse force at its tip (Fig. 7).

The results of the tip vertical deflection are shown in Table 6. Better solutions can be obtained by AGQ6-I and AGQ6-

II than by other elements QM6, P-S and PEAS7.

Example 5. Thin curving beam (Fig. 8)

As shown in Fig. 8, a cantilever thin curving beam is subjected to a transverse force at the tip. And it is also divided

by five elements. Two thickness–radius ratios, (i) h=R ¼ 0:03 and (ii) h=R ¼ 0:006, are considered. The results of the tip
displacement, obtained by the elements Q4, Q6, QM6, QUAD4 and the present elements, are listed in Table 7.

Compared with the mesh used in the previous example, the shape of the elements in this example becomes much

narrower. The length–width ratio of the elements reaches 10 when h=R ¼ 0:03, and will be larger if h=R ¼ 0:006. That is
to say, the distortion will become more and more serious if the length–width ratio increases. From the Table 7, it can be

seen that elements Q4, Q6, QM6 and QUAD4 are very sensitive to the mesh distortion caused by the increase of the

length–width ratio. They all suffer from the locking problem. But at the same time, the presented elements, AGQ6-I and

AGQ6-II, are insensitive to this kind of distortion.
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Fig. 7. Bending of thick curving beam.

Table 6

The tip deflection of a thick curving beam (Fig. 7)

Elements QM6 P-S PEAS7 AQ6-I AQ6-II Exact solution

vA 83.61 84.58 84.58 91.88 86.93 90.1

h 

R 

P , w

Fig. 8. Bending of thin curving beam.

Table 7

The tip deflection of a thin curving beam (Fig. 8)

h=R Q4 Q6 QM6 QUAD4 AQ6-I AQ6-II Exact solution

0.03 0.024 0.770 0.339 0.615 1.008 1.008 1.000

0.006 0.001 0.285 0.022 0.163 1.008 1.008 1.000
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Example 6. MacNeal’s thin cantilever beam with distorted meshes (Fig. 9)

Consider the thin beams presented in Fig. 9. Three different mesh shapes, rectangular, parallelogram and trape-

zoidal, are adopted. This example, proposed by MacNeal and Harder [6], is a famous benchmark for testing the

sensitivity to mesh distortion of the 4-node quadrilateral membrane elements. Besides the distortion caused only by the

length–width ratio, the composite distortions of parallelogram and trapezoidal shapes together with length–width ratio

are also taken into account.

There are two loading cases under consideration: pure bending and transverse linear bending. The Young’s modulus

of the beam E ¼ 107; the Poisson’s ratio l ¼ 0:3; and the thickness of the beam t ¼ 0:1.
The results of the tip deflection are shown in Table 8. Besides the presented elements, the results obtained by other

nine element models are also given for comparison.

From Table 8, one can conclude that

(1) It is obvious that element Q4 suffers from locking problems for all three types of distortion ((a) length–width ratio

distortion, (b) parallelogram distortion, (c) trapezoidal distortion) of three different meshes.

(2) Other eight elements can all improve the accuracy more or less.

Firstly, they all exhibit high precision using mesh (a), no locking problem happens for the distortion caused by the

length–width ratio.

Secondly, although their precisions are also improved using mesh (b) and mesh (c), the locking problems are still not

avoided completely, especially for the trapezoidal locking.
6 
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45
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Fig. 9. MacNeal’s beam.

Table 8

The normalized results of the tip deflection for the MacNeal’s thin beam using different meshes (Fig. 9)

Element Load P Load M

Mesh (a) Mesh (b) Mesh (c) Mesh (a) Mesh (b) Mesh (c)

Q4 0.093 0.035 0.003 0.093 0.031 0.022

Q6 0.993 0.677 0.106 1.000 0.759 0.093

QM6 0.993 0.623 0.044 1.000 0.722 0.037

QUAD4 0.904 0.080 0.071 – – –

P-S 0.993 0.798 0.221 1.000 0.852 0.167

PEAS7 0.982 0.795 0.217 – – –

PN340 0.982 0.620 0.065 – – –

ANSYS 0.979 0.624 0.047 – – –

RGD20 0.981 0.625 0.047 – – –

AQ6-I 0.993 0.994 0.994 1.000 1.000 1.000

AQ6-II 0.993 0.994 0.994 1.000 1.000 1.000

Exact 1.000a 1.000b

a The standard value is )0.1081.
b The standard value is )0.0054.
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(3) The presented elements, AGQ6-I and AGQ6-II, possess high accuracy for all three mesh divisions, and are insensitive

to three types of distortion. Moreover, they can even produce the exact solutions for the pure bending problem.

MacNeal [7] has pointed out that if the element can pass the constant strain/stress patch test in a finite size mesh (i.e.,

the strict patch test), the trapezoidal locking will inevitably appear for the element in the calculation of the MacNeal’s

thin beam. One reason that the present elements can successfully avoid trapezoidal locking is that the new tool of the

quadrilateral area coordinate system is used, which can always keep the second-order completeness in Cartesian co-

ordinates under distortion meshes. Besides, instead of the strict form, only the weak patch test are utilized in this paper

(Example 8) to assure the convergence of the new elements.

Example 7. Cantilever beam divided by two elements containing a parameter of distortion (Fig. 10)

The cantilever beam shown in Fig. 10 is divided by two elements. The shape of the two elements varies with the

distorted parameter e. When e ¼ 0, both elements are rectangular. But with the increase of e, the mesh will be distorted

more and more seriously. This is another famous benchmark for testing the sensitivity to the mesh distortion.

For pure bending problem, the results of the tip deflection at point A are listed in Table 9. Besides the present

elements, the solutions obtained by other five models are also given for comparison.

From the Table 9, it shows that:

The accuracy of the element Q4 is the poorest. Its relative error reaches 72% when e ¼ 0.

The accuracies of the elements QM6, P-S, QE2 and B-Q4E are better than that of Q4. All these four elements can

produce the exact solution when e ¼ 0. But unfortunately, they are still sensitive to the mesh distortion. The relative

error can reach 37% or so when e ¼ 1, and will continue growing if e keeps increasing.

But the things become very different for the presented elements AGQ6-I and AGQ6-II. Both can keep providing the

exact solutions when e varies from 0 to 5, i.e., they can overcome the trapezoidal locking completely. This shows again

the advantages of the quadrilateral area coordinates and the weak patch test (Example 8).

Example 8. Weak patch test (Fig. 11)

The constant strain/stress weak patch test using irregular mesh is shown in Fig. 11. Let Young’s modulus E ¼ 1000,

Poisson’s ratio l ¼ 0:25, and thickness of the patch t ¼ 1. At first, the patch divided by only three elements, as shown in

Fig. 11a, is considered. Each element is then bisected through the midpoints of the element sides. Thus, each original
y
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5 5
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E=1500,    =0.25, t=1 

2

M=2000 

µ

Fig. 10. Cantilever beam divided by two elements with distorted parameter e.

Table 9

Results of the tip deflection of a cantilever beam with a distorted parameter e (Fig. 10)

e 0 0.5 1 2 3 4 4.9

Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2

QM6 100 80.9 62.7 54.4 53.6 51.2 46.8

P-S 100 81.0 62.9 55.0 54.7 53.1 49.8

QE2 100 81.2 63.4 56.5 57.5 57.9 56.9

B-Q4E 100 81.2 63.4 56.5 57.5 57.9 56.9

AQ6I 100 100 100 100 100 100 100

AQ6II 100 100 100 100 100 100 100

Exact 100 100 100 100 100 100 100
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Fig. 11. Constant strain problem for weak patch test. (a) Three elements and (b) 192 elements.

Table 10

Weak patch test for element AQ6-I (Panel A), AQ6-II (Panel B)

Mesh v2 v3 u4 v4 u5 v5 u6 v6 u7 v7

Panel A

3 elements )0.2787 )0.4291 2.0758 )0.4211 2.4946 )0.9491 5.4819 )0.8051 4.9589 )1.6375
12 elements )0.2653 )0.4735 2.0508 )0.1862 2.4578 )0.3988 4.7955 0.1313 4.2688 )0.8346
48 elements )0.2605 )0.4962 2.0142 )0.1238 2.4975 )0.1044 4.2432 0.1049 4.0753 )0.5683
192 elements )0.2544 )0.4996 2.0042 )0.1231 2.5007 )0.0288 4.0685 )0.0383 4.0233 )0.5203

Exact )0.2500 )0.5000 2.0000 )0.1250 2.5000 0.0000 4.0000 0.0000 4.0000 )0.5000

Panel B

3 elements )0.3010 )0.5017 1.7560 )0.8383 2.0800 )1.4505 5.0614 )2.1764 5.6885 )3.3179
12 elements )0.2603 )0.4742 1.9686 )0.2532 2.4159 )0.4300 4.6898 )0.0461 4.3891 )1.0944
48 elements )0.2592 )0.4952 1.9931 )0.1399 2.4883 )0.1126 4.2084 0.0563 4.1030 )0.6233
192 elements )0.2540 )0.4992 1.9987 )0.1268 2.4988 )0.0314 4.0572 0.0242 4.0302 )0.5335

Exact )0.2500 )0.5000 2.0000 )0.1250 2.5000 0.0000 4.0000 0.0000 4.0000 )0.5000
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element is subdivided into four elements. Repeat this division again and again, the total number of the elements in the

refined mesh after each action will be 12, 48, 192, . . ., in turn. The mesh that contains 192 elements is plotted in Fig. 11b.

The results of nodal displacements ui and vi (i ¼ 2; 3; . . . ; 7) in different mesh divisions, obtained by AGQ6-I and

AGQ6-II, are shown in Table 10 panel A and panel B, respectively.

From Table 10 panel A and panel B, it can be seen that the new elements cannot give the exact solutions using the

coarse mesh in finite size, i.e., they fail to pass the strict patch test. But with the subdivision of the mesh, the results

obtained by both elements will converge to the exact solutions. Therefore, they pass the weak patch test.

It has to be acknowledged that in the constant strain/stress patch test the behavior of both present elements are not

as perfect as in other foregoing examples, which are in fact more difficult patch tests. This phenomenon may be

consistent with the theorem shown by MacNeal [7], i.e., four-node membrane elements with two DOFs per node would

either lock in in-plane bending or fail to pass a C0 patch test (strict form) when element shape is an isosceles trapezoid.

However, since both elements can pass the weak constant strain/stress patch test, the convergence of these two non-

conforming elements is still guaranteed.

It is not discovered in this paper, why the present elements fail to pass the strict form constant strain/stress patch

test. It is worthy of further studies on this interesting topic. Some advanced concepts, for examples, the inf-sup tests

proposed by Bathe [31,32], the convergence test for nonconforming elements proposed by Shi [33], etc., may be utilized

to solve or explain the puzzle.
6. Conclusions

Two 4-node quadrilateral membrane elements, AGQ6-I and AGQ6-II, have been developed using the quadrilat-

eral area coordinates and generalized conforming conditions. The formulations of these elements are quite simple
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and easy to be constructed. And the potential accuracy and versatility of the said elements have been illustrated using

eight numerical examples, which show that: the two new elements can not only produce the exact solutions for

pure bending problems using arbitrary mesh, but also avoid trapezoidal locking of MacNeal’s thin beam divided by

distorted mesh. Compared with other 4-node quadrilateral membrane element models, the present elements exhibit

higher precision and are more insensitive to mesh distortion. And their convergence is assured by passing the weak

patch test.

The important significance of this paper is worthy of being pointed out:

(i) This paper provides successful experience for constructing quadrilateral membrane elements that are insensitive to

mesh distortion. For a long time, many researchers have struggled for establishing effective element models that can

not only solve the trapezoidal locking in MacNeal’s thin beam problem, but also ensure the convergence of them.

But after many failed attempts, somebody even suspected that above two purposes could not be achieved simulta-

neously. This paper negates this suspicion, because it is obviously that both purposes have been realized by the pre-

sent elements. The success depends on two keys: the isoparametric coordinates are replaced by the quadrilateral

area coordinate system; and the strict patch test is replaced by the weak form.

(ii) This paper also shows the advantages of the quadrilateral area coordinates, especially for their excellent perfor-

mance that can improve insensitivity of elements to distorted meshes. This merit has been exhibited in Ref. [4]

for constructing 8-node quadrilateral membrane elements, now it is again illustrated here for constructing 4-node

models. Besides, the formulations expressed by the area coordinates are isotropic because the area coordinate sys-

tem is a natural coordinate system. This is another distinguished character of the area coordinates, which the Car-

tesian coordinates cannot assure.
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Appendix A. The subroutine of the element stiffness matrix (Fortran 90)

SUBROUTINE ELE_STIF_AGQ6(ESTIF, COREN, DMATX, T, ITYPE)
!* ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ *!

!* Variable Statement: *!

!* A :) the Area of the quadrilateral element 1234 *!

!* A1, A2, A3 :) the Areas of the triangle 124, 123 and 234, respectively *!

!* BLMATX(3,4) :) ½Bk�, the strain MATriX of the internal DOFs *!

!* BQMATX(3,8) :) ½Bq�, the strain MATriX of the external DOFs *!
!* COREN(2,4) :) the COoRdinates of the Element Nodes *!

!* DERIV_N(2,4) :) the derivations of the shape function of the element Q4 respect to n; g *!

!* DJACB :) the Jacobian determinant *!

!* DMATX(3,3) :) [D], the elastic MATriX of the element *!

!* EITA(4) :) the isoparametric coordinates gi ði ¼ 1; 2; 3; 4Þ of the element nodes *!

!* ESTIF(8,8) :) the Element STIFfness matrix ½K�e *!

!* ESTIFLL(4,4) :) ½Kkk�, the second expression of Eq. (31) *!

!* ESTIFLQ(4,8) :) ½Kkq�, the third expression of Eq. (31) *!
!* ESTIFQQ(8,8) :) ½Kqq�, the first expression of Eq. (31) *!

!* g(4) :) the four characteristic parameters of a quadrilateral *!

!* ITYPE :) the Indicator of the element TYPE, *!

!* ITYPE¼ 1: element AGQ6I; ITYPE¼ 2: element AGQ6II *!

!* KSAI(4) :) the isoparametric coordinates ni ði ¼ 1; 2; 3; 4Þ of the element nodes *!



!* L(4) :) the area coordinates *!

!* N0X(4),N0Y(4) :) The derivations of nodal shape function respect to X , Y *!
!* NLX(2),NLY(2) :) The derivations of internal parameter shape function respect to X , Y *!

!* POSGP(3) :) POSition of Gauss Points *!

!* SX, SY :) The expressions ðSx; SyÞ in Eq. (26b), or ðSx; SyÞ in Eq. (38b) *!

!* T :) the Thickness of the element *!

!* WEIGP(3) :) WEIght Coefficient of Gauss Points *!

!* X(i) :) ¼COREN(1,i), the X -coordinates of the i-th node *!

!* XJACM(2,2) :) the JACOBI matrix of element Q4 *!

!* Y(i) :) ¼COREN(2,i), the Y -coordinates of the i-th node *!
!* ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ *!
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IMPLICIT NONE

REAL*8, DIMENSION(8,8) :: ESTIF, ESTIFQQ

REAL*8, DIMENSION(4,4) :: ESTIFLL; REAL*8, DIMENSION(4,8) :: ESTIFLQ

REAL*8, DIMENSION(3,4) :: BLMATX; REAL*8, DIMENSION(3,8) :: BQMATX

REAL*8, DIMENSION(3,3) :: DMATX; REAL*8, DIMENSION(2,4) :: COREN, DERIV_N

REAL*8, DIMENSION(3) :: POSGP, WEIGP; REAL*8, DIMENSION(2,2) :: XJACM

REAL*8, DIMENSION(4) :: b, c, g, L,, X, Y, N0X, N0Y, NLX, NLY, KSAI, EITA

REAL*8 :: T ; INTEGER::ITYPE

REAL*8 :: A, A1, A2, A3, DJACB, DV, SX, SY

INTEGER:: i, j, k, ii, jj, kk, mm, igaus, jgaus

DO i¼ 1, 4; X(i)¼COREN(1,i); Y(i)¼COREN(2,i); END DO

DO i¼ 1,4 !n
j¼ i+1; IF(j>4) j¼ 1; k¼ j+1; IF(k>4) k¼ 1 !j the second and third

b(i)¼Y(j)-Y(k); c(i)¼X(k)-X(j) !j formulae of Eq.(3)

END DO !/

!* The area of the triangle 124 (See Fig.2)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

A1¼ 0.5*(X(2)*Y(4)+X(1)*Y(2)+X(4)*Y(1)-X(2)*Y(1)- X(4)*Y(2)-X(1)*Y(4))

!* The area of the triangle 123 (See Fig.2)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

A2¼ 0.5*(X(2)*Y(3)+X(1)*Y(2)+X(3)*Y(1)-X(2)*Y(1)- X(3)*Y(2)-X(1)*Y(3))

!* The area of the triangle 234 (See Fig.2)- - - - - - - - - - - - - - - - - - - - - - - - - *!

A3¼ 0.5*(X(3)*Y(4)+X(2)*Y(3)+X(4)*Y(2)-X(3)*Y(2)- X(4)*Y(3)-X(2)*Y(4))

!* The area of the quadrilateral 1234 (See Fig.2)- - - - - - - - - - - - - - - - - - - *!

A¼A1+A3

!* The characteristic parameters of a quadrilateral - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

g(1)¼A1/A; g(2)¼A2/A; g(3)¼ 1.0-g(1); g(4)¼ 1.0-g(2) !Eq.(4)

!* The positions and weight coefficients of Gauss points (3 · 3 case)- - - - - - - - - - - - - - - - - - - - *!

POSGPð1Þ ¼ �0:774596669241483; POSGP(2)¼ 0.0; POSGPð3Þ ¼ �POSGPð1Þ
WEIGP(1)¼ 0.555555555555556; WEIGP(2)¼ 0.888888888888889; WEIGP(3)¼WEIGP(1)

!* The isoparametric coordinates (ni; gi) of the four element nodes- - - - - - - - - - - - - - - - - - - - *!

KSAIð1Þ ¼ �1:0; KSAI(2)¼ 1.0; KSAI(3)¼ 1.0; KSAIð4Þ ¼ �1:0
EITAð1Þ ¼ �1:0; EITAð2Þ ¼ �1:0; EITA(3)¼ 1.0; EITA(4)¼ 1.0

!* Initialize the element stiffness matrix to zero- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

ESTIF¼ 0.0; ESTIFQQ¼ 0.0; ESTIFLL¼ 0.0; ESTIFLQ¼ 0.0

!* Results of Eq.(33)- - - - - - - - - - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

LOOP1:DO igaus¼ 1, 3

LOOP2:DO jgaus¼ 1, 3

!* The area coordinates of the Gauss Points [See Eq.(7)]- - - - - - - - - - - - - - - - - - - - - - - - - - *!

L(1)¼ 0.25*(1.0-POSGP(igaus))*(g(2)*(1.0-POSGP(jgaus))+g(3)*(1.0+POSGP(jgaus)))

L(2)¼ 0.25*(1.0-POSGP(jgaus))*(g(4)*(1.0-POSGP(igaus))+g(3)*(1.0+POSGP(igaus)))
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L(3)¼ 0.25*(1.0+POSGP(igaus))*(g(1)*(1.0-POSGP(jgaus))+g(4)*(1.0+POSGP(jgaus)))

L(4)¼ 0.25*(1.0+POSGP(jgaus))*(g(1)*(1.0-POSGP(igaus))+g(2)*(1.0+POSGP(igaus)))

!* The strain matrix of the external DOFs [See Eq.(24)]- - - - - - - - - - - - - - - - - - - - - - - - - - - *!

BQMATX¼ 0.0

LOOP3: DO i¼ 1,4

j¼ i+1; IF(j>4) j¼ 1; k¼ j+1; IF(k>4) k¼ 1

SX¼ 0.0; SY¼ 0.0

LOOP4: DO ii¼ 1,4

jj¼ ii+1; IF(jj>4) jj¼ 1; kk¼ jj+1; IF(kk>4) kk¼ 1; mm¼ kk+1; IF(mm>4) mm¼ 1

SELECT CASE(ITYPE)

CASE(1)

SX¼ SX+b(ii)*KSAI(ii)*EITA(ii)*(3.0*(L(jj)-L(mm))+(g(jj)-g(kk))) !n
SY¼ SY+c(ii)*KSAI(ii)*EITA(ii)*(3.0*(L(jj)-L(mm))+(g(jj)-g(kk))) !/ Eq. (26b)

CASE(2)

SX¼ SX+b(ii)*KSAI(ii)*EITA(ii)*(L(jj)-L(mm)) !n
SY¼ SY+c(ii)*KSAI(ii)*EITA(ii)*(L(jj)-L(mm)) !/ Eq. (38b)

END SELECT

END DO LOOP4

SELECT CASE(ITYPE)

CASE(1)

N0X(i)¼ (b(i)+b(j))/A/2.0 & !n
+KSAI(i)*EITA(i)*g(k)*SX/2.0/A/(1.0+g(1)*g(3)+g(2)*g(4)) !j

N0Y(i)¼ (c(i)+c(j))/A/2.0 & !| Eq. (26a)
+KSAI(i)*EITA(i)*g(k)*SY/2.0/A/(1.0+g(1)*g(3)+g(2)*g(4)) !/

CASE(2)

N0X(i)¼ (b(i)+b(j))/A/2.0 & !n
+KSAI(i)*EITA(i)*g(k)*SX/2.0/A/(g(1)*g(3)+g(2)*g(4)) !j

N0Y(i)¼ (c(i)+c(j))/A/2.0 & !j Eq. (38a)
+KSAI(i)*EITA(i)*g(k)*SY/2.0/A/(g(1)*g(3)+g(2)*g(4)) !/

END SELECT

BQMATX(1,2*i-1)¼N0X(i); BQMATX(2,2*i)¼N0Y(i) !n
BQMATX(3,2*i-1)¼BQMATX(2,2*i); BQMATX(3,2*i)¼BQMATX(1,2*i-1) !/ Eq. (25)

END DO LOOP3

!* The strain matrix of the internal DOFs [See Eq. (27)]- - - - - - - - - - - - - - - - - - - – - - - - - - - – - - - - - - - - *!

BLMATX¼ 0.0

LOOP5: DO i¼ 1,2

j¼ i+1; IF(j>4) j¼ 1; k¼ j+1; IF(k>4) k¼ 1

NLX(i)¼ (b(i)*L(k)+b(k)*L(i))/A/2.0; NLY(i)¼ (c(i)*L(k)+c(k)*L(i))/A/2.0 ! Eq. (29)

BLMATX(1,2*i-1)¼NLX(i); BLMATX(2,2*i)¼NLY(i) !

BLMATX(3,2*i-1)¼BLMATX(2,2*i); BLMATX(3,2*i)¼BLMATX(1,2*i-1) !/ Eq. (28)

END DO LOOP5

!* The derivations of the shape function of the element Q4 respect to n; g at the Gauss points - - - - - - - - *!

DERIV_N(1,1)¼ -0.25*(1.0-POSGP(jgaus)); DERIV_N(1,2)¼ 0.25*(1.0-POSGP(jgaus))

DERIV_N(1,3)¼ 0.25*(1.0+POSGP(jgaus)); DERIV_N(1,4)¼ -0.25*(1.0+POSGP(jgaus))

DERIV_N(2,1)¼ -0.25*(1.0-POSGP(igaus)); DERIV_N(2,2)¼ -0.25*(1.0+POSGP(igaus))

DERIV_N(2,3)¼ 0.25*(1.0+POSGP(igaus)); DERIV_N(2,4)¼ 0.25*(1.0-POSGP(igaus))

!* The JACOBI matrix and its determinant of element Q4- - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

XJACM¼MATMUL(DERIV_N,TRANSPOSE(COREN))

DJACB¼XJACM(1,1)*XJACM(2,2)-XJACM(1,2)*XJACM(2,1)

!* Calculate Eq. (33)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

DV¼DJACB*WEIGP(igaus)*WEIGP(jgaus)*T

ESTIFQQ¼ESTIFQQ+DV*MATMUL(TRANSPOSE(BQMATX), MATMUL(DMATX,BQMATX))

ESTIFLL¼ESTIFLL+DV*MATMUL(TRANSPOSE(BLMATX), MATMUL(DMATX,BLMATX))
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ESTIFLQ¼ESTIFLQ+DV*MATMUL(TRANSPOSE(BLMATX), MATMUL(DMATX,BQMATX))

END DO LOOP2

END DO LOOP1

!* Call Subroutine BRINV to calculate the inverse matrix of the matrix ESTIFLL ([Kkk- - - - - - - - - - - - - - - - *!

CALL BRINV(ESTIFLL,4) ! ESTIFLL becomes its inverse matrix after BRINV

!* Calculate the element stiffness matrix [Eq. (30)]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *!

ESTIF¼ESTIFQQ-MATMUL(TRANSPOSE(ESTIFLQ), MATMUL(ESTIFLL,ESTIFLQ))

END SUBROUTINE ELE_STIF_AGQ6

!* ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ *!

!* !*Subroutine BRINV: Solve the inverse matrix of a N-order square matrix [A] by *!

!* complete pivot Gauss-Jordan elimination *!*! *!

!* ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ *!

SUBROUTINE BRINV(A,N)

REAL*8,DIMENSION(N,N):: A; INTEGER,DIMENSION(N)::IS,JS

REAL*8 ::D,T; INTEGER::I,J,L,K,N

L¼ 1

LOOP1: DO K¼ 1,N

D¼ 0.0

LOOP2: DO I¼K,N

DO J¼K,N; IF(ABS(AðI; JÞÞ > D) THEN; D¼ABS(A(I,J)); IS(K)¼ I; JS(K)¼ J; END IF; END DO

END DO LOOP2

IF(D¼ ¼ 0.0) THEN; L¼ 0; WRITE(*,’(1X,A)’)’ERROR IN BRINV**NOT INV’; STOP; END IF

DO J¼ 1,N; T¼A(K,J); A(K,J)¼A(IS(K),J); A(IS(K),J)¼T; END DO

DO I¼ 1,N; T¼A(I,K); A(I,K)¼A(I,JS(K)); A(I,JS(K))¼T; END DO

A(K,K)¼ 1.0/A(K,K)

DO J¼ 1,N; IF(J/¼K) THEN; A(K,J)¼A(K,J)*A(K,K); END IF; END DO

LOOP3: DO I¼ 1,N

IF(I/¼K) THEN

DO J¼ 1,N; IF(J/¼K) THEN; A(I,J)¼A(I,J)-A(I,K)*A(K,J); END IF; END DO

END IF

END DO LOOP3

DO I¼ 1,N; IF(I/¼K) THEN; A(I,K)¼ -A(I,K)*A(K,K); END IF; END DO

END DO LOOP1

LOOP4: DO K¼N,1,)1
DO J¼ 1,N; T¼A(K,J); A(K,J)¼A(JS(K),J); A(JS(K),J)¼T; END DO

DO I¼ 1,N; T¼A(I,K); A(I,K)¼A(I,IS(K)); A(I,IS(K))¼T; END DO

END DO LOOP4

END SUBROUTINE BRINV
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